For months, Eduard Bodak has been sharing glimpses of his visually rich new website. Now, he’s pulling back the curtain to walk us through how three of its most striking animations were built. In this behind-the-scenes look, he shares the reasoning, technical decisions, and lessons learned—from performance trade-offs to working with CSS variables and a custom JavaScript architecture.
Overview
In this breakdown, I’ll walk you through three of the core GSAP animations on my site: flipping 3D cards that animate on scroll, an interactive card that reacts to mouse movement on the pricing page, and a circular layout of cards that subtly rotates as you scroll. I’ll share how I built each one, why I made certain decisions, and what I learned along the way.
Overview of the animations we’re handling here
I’m using Locomotive Scroll V5 in this project to handle scroll progress and viewport detection. Since it already offers built-in progress tracking via data attributes and CSS variables, I chose to use that directly for triggering animations. ScrollTrigger offers a lot of similar functionality in a more integrated way, but for this build, I wanted to keep everything centered around Locomotive’s scroll system to avoid overlap between two scroll-handling libraries.
Personally, I love the simplicity of Locomotive Scroll. You can just add data attributes to specify the trigger offset of the element within the viewport. You can also get a CSS variable --progress on the element through data attributes. This variable represents the current progress of the element and ranges between 0 and 1. This alone can animate a lot with just CSS.
I used this project to shift my focus toward more animations and visual details. It taught me a lot about GSAP, CSS, and how to adjust animations based on what feels right. I’ve always wanted to build sites that spark a little emotion when people visit them.
Note that this setup was tailored to the specific needs of the project, but in cases where scroll behavior, animations, and state management need to be tightly integrated, GSAP’s ScrollTrigger and ScrollSmoother can offer a more unified foundation.
Now, let’s take a closer look at the three animations in action!
Flipping 3D cards on scroll
I split the animation into two parts. The first is about the cards escaping on scroll. The second is about them coming back and flipping back.
While I’m using Locomotive Scroll, I need data-scroll to enable viewport detection on an element. data-scroll-offset specifies the trigger offset of the element within the viewport. It takes two values: one for the offset when the element enters the viewport, and a second for the offset when the element leaves the viewport. The same can be built with GSAP’s ScrollTrigger, just inside the JS.
data-scroll-event-progress="progressHero" will trigger the custom event I defined here. This event allows you to retrieve the current progress of the element, which ranges between 0 and 1.
Inside the JS we can add an EventListener based on the custom event we defined. Getting the progress from it and transfer it to the GSAP timeline.
this.element is here our section we defined before, so it’s data-hero-animation.
Building now the timeline method inside the class. Getting the current timeline progress. Killing the old timeline and clearing any GSAP-applied inline styles (like transforms, opacity, etc.) to avoid residue.
Using requestAnimationFrame() to avoid layout thrashing. Initializes a new, paused GSAP timeline. While we are using Locomotive Scroll it’s important that we pause the timeline, so the progress of Locomotive can handle the animation.
Figuring out relative positioning per card. targetY moves each card down so it ends near the bottom of the container. yOffsets and rotationZValues give each card a unique vertical offset and rotation.
The actual GSAP timeline. Cards slide left or right based on their index (x). Rotate on Z slightly to look scattered. Slide downward (y) to target position. Shrink and tilt (scale, rotateX) for a 3D feel. index * 0.012: adds a subtle stagger between cards.
That’s our timeline for desktop. We can now set up GSAP’s matchMedia() to use it. We can also create different timelines based on the viewport. For example, to adjust the animation on mobile, where such an immersive effect wouldn’t work as well. Even for users who prefer reduced motion, the animation could simply move the cards slightly down and fade them out, as you can see on the live site.
Add this to our init() method to initialize the class when we call it.
init() {
this.setupBreakpoints();
}
We can also add a div with a background color on top of the card and animate its opacity on scroll so it smoothly disappears.
When you look closely, the cards are floating a bit. To achieve that, we can add a repeating animation to the cards. It’s important to animate yPercent here, because we already animated y earlier, so there won’t be any conflicts.
gsap.utils.random(1.5, 2.5) comes in handy to make each floating animation a bit different, so it looks more natural. repeatRefresh: true lets the duration refresh on every repeat.
Part 02
We basically have the same structure as before. Only now we’re using a sticky container. The service_container has height: 350vh, and the service_sticky has min-height: 100vh. That’s our space to play the animation.
In the JS, we can use the progressService event as before to get our Locomotive Scroll progress. We just have another timeline here. I’m using keyframes to really fine-tune the animation.
const position = 2 - index - 1 changes the position, so cards start spread out: right, center, left. With that we can use those arrays [12, 0, -12] in the right order.
There’s the same setupBreakpoints() method as before, so we actually just need to change the timeline animation and can use the same setup as before, only in a new JS class.
We can add the same floating animation we used in part 01, and then we have the disappearing/appearing card effect.
Part 2.1
Another micro detail in that animation is the small progress preview of the three cards in the top right.
We add data-scroll-css-progress to the previous section to get a CSS variable --progress ranging from 0 to 1, which can be used for dynamic CSS effects. This data attribute comes from Locomotive Scroll.
Using CSS calc() with min() and max() to trigger animations at specific progress points. In this case, the first animation starts at 0% and finishes at 33%, the second starts at 33% and finishes at 66%, and the last starts at 66% and finishes at 100%.
On a closer look, you can see a small slide-in animation of the card before the mouse movement takes effect. This is built in GSAP using the onComplete() callback in the timeline. this.card refers to the element with data-price-card.
I’m using an elastic easing that I got from GSAPs Ease Visualizer. The timeline plays when the page loads and triggers the mouse movement animation once complete.
In our initAnimation() method, we can use GSAP’s matchMedia() to enable the mouse movement only when hover and mouse input are available.
this.mm = gsap.matchMedia();
initAnimation() {
this.mm.add("(hover: hover) and (pointer: fine) and (prefers-reduced-motion: no-preference)", () => {
gsap.ticker.add(this.mouseMovement);
return () => {
gsap.ticker.remove(this.mouseMovement);
};
});
this.mm.add("(hover: none) and (pointer: coarse) and (prefers-reduced-motion: no-preference)", () => {
...
});
}
By using the media queries hover: hover and pointer: fine, we target only devices that support a mouse and hover. With prefers-reduced-motion: no-preference, we add this animation only when reduced motion is not enabled, making it more accessible. For touch devices or smartphones, we can use hover: none and pointer: coarse to apply a different animation.
I’m using gsap.ticker to run the method this.mouseMovement, which contains the logic for handling the rotation animation.
I originally started with one of the free resources from Osmo (mouse follower) and built this mouse movement animation on top of it. I simplified it to only use the mouse’s x position, which was all I needed.
I also added calculations for how much the card can rotate on the y-axis, and it rotates the z-axis accordingly. That’s how we get this mouse movement animation.
When building these animations, there are always some edge cases I didn’t consider before. For example, what happens when I move my mouse outside the window? Or if I hover over a link or button, should the rotation animation still play?
I added behavior so that when the mouse moves outside, the card rotates back to its original position. The same behavior applies when the mouse leaves the hero section or hovers over navigation elements.
I added a state flag this.isHovering. At the start of mouseMovement(), we check if this.isHovering is false, and if so, return early. The onMouseLeave method rotates the card back to its original position.
We can adjust it further by adding another animation for mobile, since there’s no mouse movement there. Or a subtle reflection effect on the card like in the video. This is done by duplicating the card, adding an overlay with a gradient and backdrop-filter, and animating it similarly to the original card, but with opposite values.
Cards in a circular position that slightly rotate on scroll
First, we build the base of the circularly positioned cards in CSS.
At first, we add all 24 cards, then remove the ones we don’t want to show later because we don’t see them. In the CSS, the .wheel uses a grid display, so we apply grid-area: 1 / 1 to stack the cards. We later add an overlay before the wheel with the same grid-area. By using em we can use a fluid font-size to adjust the size pretty smooth on resizing the viewport.
We can remove the card from 8 to 19 as we don’t see them behind the overlay. It should look like this now.
By adding the data attributes and setup for viewport detection from Locomotive Scroll, which we used in previous modules, we can simply add our GSAP timeline for the rotation animation.
There are probably smarter ways to build these animations than I used. But since this is my first site after changing my direction and GSAP, Locomotive Scroll V5, Swup.js, and CSS animations, I’m pretty happy with the result. This project became a personal playground for learning, it really shows that you learn best by building what you imagine. I don’t know how many times I refactored my code along the way, but it gave me a good understanding of creating accessible animations.
I also did a lot of other animations on the site, mostly using CSS animations combined with JavaScript for the logic behind them.
There are also so many great resources out there to learn GSAP and CSS.
Where I learned the most:
It’s all about how you use it. You can copy and paste, which is fast but doesn’t help you learn much. Or you can build on it your own way and make it yours, that’s at least what helped me learn the most in the end.
We partnered with Meet Your Legend to bring their groundbreaking vision to life — a mentorship platform that seamlessly blends branding, UI/UX, full-stack development, and immersive digital animation.
Meet Your Legend isn’t just another online learning platform. It’s a bridge between generations of creatives. Focused on VFX, animation, and video game production, it connects aspiring talent — whether students, freelancers, or in-house studio professionals — with the industry’s most accomplished mentors. These are the legends behind the scenes: lead animators, FX supervisors, creative directors, and technical wizards who’ve shaped some of the biggest productions in modern entertainment.
Our goal? To create a vivid digital identity and interactive platform that captures three core qualities:
The energy of creativity
The precision of industry-level expertise
The dynamism of motion graphics and storytelling
At the heart of everything was a single driving idea: movement. Not just visual movement — but career momentum, the transfer of knowledge, and the emotional propulsion behind creativity itself.
We built the brand identity around the letter “M” — stylized with an elongated tail that represents momentum, legacy, and forward motion. This tail forms a graphic throughline across the platform. Mentor names, modules, and animations plug into it, creating a modular and adaptable system that evolves with the content and contributors.
From the visual system to the narrative structure, we wanted every interaction to feel alive — dynamic, immersive, and unapologetically aspirational.
The Concept
The site’s architecture is built around a narrative arc, not just a navigation system.
Users aren’t dropped into a menu or a generic homepage. Instead, they’re invited into a story. From the moment the site loads, there’s a sense of atmosphere and anticipation — an introduction to the platform’s mission, mood, and voice before unveiling the core offering: the mentors themselves, or as the platform calls them, “The Legends.”
Each element of the experience is structured with intention. We carefully designed the content flow to evoke a sense of reverence, curiosity, and inspiration. Think of it as a cinematic trailer for a mentorship journey.
We weren’t just explaining the brand — we were immersing visitors in it.
Typography & Color System
The typography system plays a crucial role in reinforcing the platform’s dual personality: technical sophistication meets expressive creativity.
We paired two distinct sans-serif fonts:
– A light-weight, technical font to convey structure, clarity, and approachability — ideal for body text and interface elements
– A bold, expressive typeface that commands attention — perfect for mentor names, quotes, calls to action, and narrative highlights
The contrast between these two fonts helps create rhythm, pacing, and emotional depth across the experience.
The color palette is deliberately cinematic and memorable:
Flash orange signals energy, creative fire, and boldness. It’s the spark — the invitation to engage.
A range of neutrals — beige, brown, and warm grays — offer a sense of balance, maturity, and professionalism. These tones ground the experience and create contrast for vibrant elements.
Together, the system is both modern and timeless — a tribute to craft, not trend.
Technology Stack
We brought the platform to life with a modern and modular tech stack designed for both performance and storytelling:
WordPress (headless CMS) for scalable, easy-to-manage content that supports a dynamic editorial workflow
GSAP (GreenSock Animation Platform) for fluid, timeline-based animations across scroll and interactions
Three.js / WebGL for high-performance visual effects, shaders, and real-time graphical experiences
Custom booking system powered by Make, Google Calendar, Whereby, and Stripe — enabling seamless scheduling, video sessions, and payments
This stack allowed us to deliver a responsive, cinematic experience without compromising speed or maintainability.
Loader Experience
Even the loading screen is part of the story.
We designed a cinematic prelude using the “M” tail as a narrative element. This loader animation doesn’t just fill time — it sets the stage. Meanwhile, key phrases from the creative world — terms like motion 2D & 3D, vfx, cgi, and motion capture — animate in and out of view, building excitement and immersing users in the language of the craft.
It’s a sensory preview of what’s to come, priming the visitor for an experience rooted in industry and artistry.
Title Reveal Effects
Typography becomes motion.
To bring the brand’s kinetic DNA to life, we implemented a custom mask-reveal effect for major headlines. Each title glides into view with trailing motion, echoing the flowing “M” mark. This creates a feeling of elegance, control, and continuity — like a shot dissolving in a film edit.
These transitions do more than delight — they reinforce the platform’s identity, delivering brand through movement.
Menu Interaction
We didn’t want the menu to feel like a utility. We wanted it to feel like a scene transition.
The menu unfolds within the iconic M-shape — its structure serving as both interface and metaphor. As users open it, they reveal layers: content categories, mentor profiles, and stories. Every motion is deliberate, reminiscent of opening a timeline in an editing suite or peeling back layers in a 3D model.
It’s tactile, immersive, and true to the world the platform celebrates.
Gradient & WebGL Shader
A major visual motif was the idea of “burning film” — inspired by analog processes but expressed through modern code.
To bring this to life, we created a custom WebGL shader, incorporating a reactive orange gradient from the brand palette. As users move their mouse or scroll, the shader responds in real-time, adding a subtle but powerful VFX-style distortion to the screen.
This isn’t just decoration. It’s a living texture — a symbol of the heat, friction, and passion that fuel creative careers.
Scroll-Based Storytelling
The homepage isn’t static. It’s a stage for narrative progression.
We designed the flow as a scroll-driven experience where content and story unfold in sync. From an opening slider that introduces the brand, to immersive sections that highlight individual mentors and their work, each moment is carefully choreographed.
Users aren’t just reading — they’re experiencing a sequence, like scenes in a movie or levels in a game. It’s structured, emotional, and deeply human.
Who We Are
We are a digital studio at the intersection of design, storytelling, and interaction. Our approach is rooted in concept and craft. We build digital experiences that are not only visually compelling but emotionally resonant.
From bold brands to immersive websites, we design with movement in mind — movement of pixels, of emotion, and of purpose.
Because we believe great design doesn’t just look good — it moves you.
“Aurel’s Grand Theater” is an experimental, unconventional solo portfolio project that invites users to read case
studies, solve mysteries to unlock secret pages, or freely explore the theater – jumping around and even smashing
things!
I had an absolute blast working on it, even though it took much longer than I anticipated. Once I finally settled on a
creative direction, the project took about a year to complete – but reaching that direction took nearly two years on
its own. Throughout the journey, I balanced a full-time job as a lead web developer, freelance gigs, and an unexpected
relocation to the other side of the world. The cherry on top? I went through way
too many artistic iterations. It ‘s my longest solo project to date, but also one of the most fun and creatively
rewarding. It gave me the chance to dive deep into creative coding and design.
This article takes you behind the scenes of the project – covering everything from design to code, including tools,
inspiration, project architecture, design patterns, and even feature breakdowns with code snippets you can adapt for
your own work.
The Creative Process: Behind the Curtain
Genesis
After eight years, my portfolio no longer reflected my skills or creativity. I wanted to create something unconventional – an experience where visitors become active participants rather than passive observers. Most importantly, I wanted it to be something I ‘d genuinely enjoy building. I was wrapping up “ Leap for Mankind” at the time and had a blast working on it, blending storytelling with game and interactive elements. I wanted to create another experimental website that combines game mechanics with a narrative experience.
From the beginning, I envisioned a small character that could freely explore its environment – smashing objects, interacting with surrounding elements, and navigating not just the floor but also vertical spaces by jumping onto tables and chairs. The goal was to transform the portfolio from a passive viewing experience into a fun, interactive one. At the same time, I recognized that some content demands clarity over creativity. For example, case studies require a more traditional format that emphasizes readability.
One of the key challenges, then, was designing a portfolio that could seamlessly transition between an immersive 3D game world and more conventional documentation pages – without disrupting the overall experience.
Building the Foundation
I had a general concept of the website in mind, so I started coding a proof of concept (POC) for the game back in
2022. In this early version, the player could move around, bump into objects, and jump – laying the foundation for the
interactive world I envisioned. Interestingly, much of the core code structure from that POC made it into the final
product. While the technical side was coming together, I still hadn ‘t figured out the artistic direction at that
point.
Early Proof Of Concept
Trials and Errors
As a full-time web developer, I rarely find myself wrestling with artistic direction. Until now, every freelance and
side project I took on began with a clear creative vision that simply needed technical execution.
This time was different. At first, I leaned toward a cartoonish aesthetic with bold outlines, thinking it would
emphasize my creativity. I tried to convince myself it worked, but something felt off – especially when pairing the
visual style with the user interface. The disconnect between my vision and its execution was unfamiliar territory, and
it led me down a long and winding path of creative exploration.
Early artistic direction
I experimented with other styles too, like painterly visuals, which held promise but proved too time-consuming. Each
artistic direction felt either not suitable for me or beyond my practical capabilities as a developer moonlighting as
a designer.
The theater concept – which ultimately became central to the portfolio ‘s identity – arrived surprisingly late. It
wasn ‘t part of the original vision but surfaced only after countless iterations and discarded ideas. In total,
finding an artistic direction that truly resonated took nearly two years – a journey further complicated by a major
relocation across continents, ongoing work and freelance commitments, and personal responsibilities.
The extended timeline wasn ‘t due to technical complexity, but to an unexpected battle with creative identity. What
began as a straightforward portfolio refresh evolved into a deeper exploration of how to merge professional
presentation with personal expression – pushing me far beyond code and into the world of creative direction.
Tools & Inspiration: The Heart of Creation
After numerous iterations and abandoned concepts, I finally arrived at a creative direction that resonated with my
vision. Rather than detailing every artistic detour, I ‘ll focus on the tools and direction that ultimately led to the
final product.
Design Stack
Below is the stack I use to design my 3D projects:
UI/UX & Visual Design
Figma
: When I first started, everything was laid out in a Photoshop file. Over the years, I tried various design tools,
but I ‘ve been using Figma consistently since 2018 – and I ‘ve been really satisfied with it ever since.
Miro
: reat for moodboarding and early ideation. It helps me visually organize thoughts and explore concepts during the
initial phase.
3D Modeling & Texturing
Blender
: My favorite tool for 3D modeling. It ‘s incredibly powerful and flexible, though it does have a steep learning
curve at first. Still, it ‘s well worth the effort for the level of creative control it offers.
Adobe Substance 3D Painter
: The gold standard in my workflow for texture painting. It’s expensive, but the quality and precision it delivers
make it indispensable.
Image Editing
Krita
: I only need light photo editing, and Krita handles that perfectly without locking me into Adobe ‘s ecosystem – a
practical and efficient alternative.
Drawing Inspiration from Storytellers
While I drew inspiration from many sources, the most influential were Studio Ghibli and the mystical world of Harry
Potter. Ghibli ‘s meticulous attention to environmental detail shaped my understanding of atmosphere, while the
enchanting realism of the Harry Potter universe helped define the mood I wanted to evoke. I also browsed platforms
like ArtStation and Pinterest for broader visual inspiration, while sites like Behance, FWA, and Awwwards influenced
the more granular aspects of UX/UI design.
Initially, I organized these references on an InVision board. However, when the platform shut down mid-project, I had
to migrate everything to Miro – an unexpected transition and symbolic disruption that echoed the broader delays in the
project.
Mood board of Aurel’s Grand Theater
Designing the Theater
The theater concept emerged as the perfect metaphor for a portfolio: a space where different works could be presented
as “performances,” while maintaining a cohesive environment. It also aligned beautifully with the nostalgic,
pre-digital vibe inspired by many of my visual references.
Environment design is a specialized discipline I wasn ‘t very familiar with initially. To create a theater that felt
visually engaging and believable, I studied techniques from the FZD School
. These approaches were invaluable in conceptualizing spaces that truly feel alive: places where you can sense people
living their lives, working, and interacting with the environment.
To make the environment feel genuinely inhabited, I incorporated details that suggest human presence: scattered props,
tools, theater posters, food items, pamphlets, and even bits of miscellaneous junk throughout the space. These
seemingly minor elements were crucial in transforming the static 3D model into a setting rich with history, mood, and
character.
The 3D Modeling Process
Optimizing for Web Performance
Creating 3D environments for the web comes with unique challenges that differ significantly from video modelling. When
scenes need to be rendered in real-time by a browser, every polygon matters.
To address this, I adopted a strict low-poly approach and focused heavily on building reusable modular components.
These elements could be instantiated throughout the environment without duplicating unnecessary geometry or textures.
While the final result is still relatively heavy, this modular system allowed me to construct more complex and
detailed scenes while maintaining reasonable download sizes and rendering performance, which wouldn ‘t have been
possible without this approach.
Scaffolds models
Scaffolds models merged with the tower, hanok house and walls props
Texture Over Geometry
Rather than modeling intricate details that would increase polygon counts, I leveraged textures to suggest complexity.
Adobe Substance 3D became my primary tool for creating rich material surfaces that could convey detail without
overloading the renderer. This approach was particularly effective for elements like the traditional Hanok windows
with their intricate wooden lattice patterns. Instead of modeling each panel, which would have been
performance-prohibitive, I painted the details into textures and applied them to simple geometric forms.
Hanok model’s verticesHanok model painted using 3d Substance Painter
Frameworks & Patterns: Behind the Scenes of Development
Tech Stack
This is a comprehensive overview of the technology stack I used for Aurel’s Grand Theater website, leveraging my
existing expertise while incorporating specialized tools for animation and 3D effects.
Core Framework
Vue.js
: While I previously worked with React, Vue has been my primary framework since 2018. Beyond simply enjoying and
loving this framework, it makes sense for me to maintain consistency between the tools I use at work and on my side
projects. I also use Vite and Pinia.
Animation & Interaction
GSAP
: A cornerstone of my development toolkit for nearly a decade, primarily utilized on this project for:
ScrollTrigger functionality
MotionPath animations
Timeline and tweens
As a personal challenge, I created my own text-splitting functionality for this project (since it wasn ‘t client
work), but I highly recommend GSAP ‘s SplitText for most use cases.
Lenis
: My go-to library for smooth scrolling. It integrates beautifully with scroll animations, especially when working
with Three.js.
3D Graphics & Physics
Three.js
: My favorite 3D framework and a key part of my toolkit since 2015. I enjoy using it to bring interactive 3D
elements to the web.
Cannon.js
: Powers the site ‘s physics simulations. While I considered alternatives like Rapier, I stuck with Cannon.js since
it was already integrated into my 2022 proof-of-concept. Replacing it would have introduced unnecessary delays.
Styling
Queso
: A headless CSS framework developed at MamboMambo (my workplace). I chose it for its comprehensive starter
components and seamless integration with my workflow. Despite being in beta, it ‘s already reliable and flexible.
This tech stack strikes a balance between familiar tools and specialized libraries that enable the visual and
interactive elements that define the site’s experience.
Architecture
I follow Clean Code principles and other industry best practices, including aiming to keep my files small,
independent, reusable, concise, and testable.
I’ve also adopted the component folder architecture developed at my workplace. Instead of placing Vue
files directly inside the ./components
directory, each component resides in its own folder. This folder contains the Vue
file along with related types, unit tests, supporting files, and any child components.
Although initially designed for Vue
components, I ‘ve found this structure works equally well for organizing logic with Typescript
files, utilities
, directives
, and more. It ‘s a clean, consistent system that improves code readability, maintainability, and scalability.
This structured approach helps me manage the code base efficiently and maintain clear separation of concerns
throughout the codebase, making both development and future maintenance significantly more straightforward.
Design Patterns
Singleton
Singletons play a key role in this type of project architecture, enabling efficient code reuse without incurring
performance penalties.
import Experience from "@/three/Experience/Experience";
import type { Scene } from "@/types/three.types";
let instance: SingletonExample | null = null;
export default class SingletonExample {
private scene: Scene;
private experience: Experience;
constructor() {
if (instance) {
return instance;
}
instance = this;
this.experience = new Experience();
this.scene = this.experience.scene;
}
init() {
// initialize the singleton
}
someMethod() {
// some method
}
update() {
// update the singleton
}
update10fps() {
// Optional: update methods capped at 10FPS
}
destroySingleton() {
// clean up three.js + destroy the singleton
}
}
Split Responsibility Architecture
As shown earlier in the project architecture section, I deliberately separated physics management from model handling
to produce smaller, more maintainable files.
World Management Files:
These files are responsible for initializing factories and managing meshes within the main loop. They may also include
functions specific to individual world items.
Here’s an example of one such file:
// src/three/Experience/Theater/mockFileModel/mockFileModel.ts
import Experience from "@/three/Experience/Theater/Experience/Experience";
import type {
List,
LoadModel
} from "@/types/experience/experience.types";
import type { Scene } from "@/types/three.types";
import type Physics from "@/three/Experience/Theater/Physics/Physics";
import type { Resources } from "@/three/Experience/Utils/Ressources/Resources";
import type { MaterialGenerator } from "@/types/experience/materialGeneratorType";
let instance: mockWorldFile | null = null;
export default class mockWorldFile {
private experience: Experience;
private list: List;
private physics: Physics;
private resources: Resources;
private scene: Scene;
private materialGenerator: MaterialGenerator;
public loadModel: LoadModel;
constructor() {
// Singleton
if (instance) {
return instance;
}
instance = this;
this.experience = new Experience();
this.scene = this.experience.scene;
this.resources = this.experience.resources;
this.physics = this.experience.physics;
// factories
this.materialGenerator = this.experience.materialGenerator;
this.loadModel = this.experience.loadModel;
// Most of the material are init in a file called sharedMaterials
const bakedMaterial = this.experience.world.sharedMaterials.bakedMaterial;
// physics infos such as position, rotation, scale, weight etc.
const paintBucketPhysics = this.physics.items.paintBucket;
// Array of objects of models. This will be used to update it's position, rotation, scale, etc.
this.list = {
paintBucket: [],
...
};
// get the resource file
const resourcePaintBucket = this.resources.items.paintBucketWhite;
//Reusable code to add models with physics to the scene. I will talk about that later.
this.loadModel.setModels(
resourcePaintBucket.scene,
paintBucketPhysics,
"paintBucketWhite",
bakedMaterial,
true,
true,
false,
false,
false,
this.list.paintBucket,
this.physics.mock,
"metalBowlFalling",
);
}
otherMethod() {
...
}
destroySingleton() {
...
}
}
Physics Management Files
These files trigger the factories to apply physics to meshes, store the resulting physics bodies, and update mesh
positions on each frame.
// src/three/Experience/Theater/pathTo/mockFilePhysics
import Experience from "@/three/Experience/Theater/Experience/Experience";
import additionalShape from "./additionalShape.json";
import type {
PhysicsResources,
TrackName,
List,
modelsList
} from "@/types/experience/experience.types";
import type { cannonObject } from "@/types/three.types";
import type PhysicsGenerator from "../Factories/PhysicsGenerator/PhysicsGenerator";
import type UpdateLocation from "../Utils/UpdateLocation/UpdateLocation";
import type UpdatePositionMesh from "../Utils/UpdatePositionMesh/UpdatePositionMesh";
import type AudioGenerator from "../Utils/AudioGenerator/AudioGenerator";
let instance: MockFilePhysics | null = null;
export default class MockFilePhysics {
private experience: Experience;
private list: List;
private physicsGenerator: PhysicsGenerator;
private updateLocation: UpdateLocation;
private modelsList: modelsList;
private updatePositionMesh: UpdatePositionMesh;
private audioGenerator: AudioGenerator;
constructor() {
// Singleton
if (instance) {
return instance;
}
instance = this;
this.experience = new Experience();
this.debug = this.experience.debug;
this.physicsGenerator = this.experience.physicsGenerator;
this.updateLocation = this.experience.updateLocation;
this.updatePositionMesh = this.experience.updatePositionMesh;
this.audioGenerator = this.experience.audioGenerator;
// Array of objects of physics. This will be used to update the model's position, rotation, scale etc.
this.list = {
paintBucket: [],
};
}
setModelsList() {
//When the load progress reaches a certain percentage, we can set the models list, avoiding some potential bugs or unnecessary conditional logic. Please note that the method update is never run until the scene is fully ready.
this.modelsList = this.experience.world.constructionToolsModel.list;
}
addNewItem(
element: PhysicsResources,
listName: string,
trackName: TrackName,
sleepSpeedLimit: number | null = null,
) {
// factory to add physics, I will talk about that later
const itemWithPhysics = this.physicsGenerator.createItemPhysics(
element,
null,
true,
true,
trackName,
sleepSpeedLimit,
);
// Additional optional shapes to the item if needed
switch (listName) {
case "broom":
this.physicsGenerator.addMultipleAdditionalShapesToItem(
itemWithPhysics,
additionalShape.broomHandle,
);
break;
}
this.list[listName].push(itemWithPhysics);
}
// this methods is called everyfame.
update() {
// reusable code to update the position of the mesh
this.updatePositionMesh.updatePositionMesh(
this.modelsList["paintBucket"],
this.list["paintBucket"],
);
}
destroySingleton() {
...
}
}
Since the logic for updating mesh positions is consistent across the project, I created reusable code that can be
applied in nearly all physics-related files.
// src/three/Experience/Utils/UpdatePositionMesh/UpdatePositionMesh.ts
export default class UpdatePositionMesh {
updatePositionMesh(meshList: MeshList, physicList: PhysicList) {
for (let index = 0; index < physicList.length; index++) {
const physic = physicList[index];
const model = meshList[index].model;
model.position.set(
physic.position.x,
physic.position.y,
physic.position.z
);
model.quaternion.set(
physic.quaternion.x,
physic.quaternion.y,
physic.quaternion.z,
physic.quaternion.w
);
}
}
}
Factory Patterns
To avoid redundant code, I built a system around reusable code. While the project includes multiple factories, these
two are the most essential:
Model Factory
: LoadModel
With few exceptions, all models—whether instanced or regular, with or without physics—are added through this factory.
// src/three/Experience/factories/LoadModel/LoadModel.ts
import * as THREE from "three";
import Experience from "@/three/Experience/Theater/Experience/Experience";
import type {
PhysicsResources,
TrackName,
List,
modelListPath,
PhysicsListPath
} from "@/types/experience/experience.type";
import type { loadModelMaterial } from "./types";
import type { Material, Scene, Mesh } from "@/types/Three.types";
import type Progress from "@/three/Experience/Utils/Progress/Progress";
import type AddPhysicsToModel from "@/three/Experience/factories/AddPhysicsToModel/AddPhysicsToModel";
let instance: LoadModel | null = null;
export default class LoadModel {
public experience: Experience;
public progress: Progress;
public mesh: Mesh;
public addPhysicsToModel: AddPhysicsToModel;
public scene: Scene;
constructor() {
if (instance) {
return instance;
}
instance = this;
this.experience = new Experience();
this.scene = this.experience.scene;
this.progress = this.experience.progress;
this.addPhysicsToModel = this.experience.addPhysicsToModel;
}
async setModels(
model: Model,
list: PhysicsResources[],
physicsList: string,
bakedMaterial: LoadModelMaterial,
isCastShadow: boolean = false,
isReceiveShadow: boolean = false,
isIntancedModel: boolean = false,
isDoubleSided: boolean = false,
modelListPath: ModelListPath,
physicsListPath: PhysicsListPath,
trackName: TrackName = null,
sleepSpeedLimit: number | null = null,
) {
const loadedModel = isIntancedModel
? await this.addInstancedModel(
model,
bakedMaterial,
true,
true,
isDoubleSided,
isCastShadow,
isReceiveShadow,
list.length,
)
: await this.addModel(
model,
bakedMaterial,
true,
true,
isDoubleSided,
isCastShadow,
isReceiveShadow,
);
this.addPhysicsToModel.loopListThenAddModelToSceneThenToPhysics(
list,
modelListPath,
physicsListPath,
physicsList,
loadedModel,
isIntancedModel,
trackName,
sleepSpeedLimit,
);
}
addModel = (
model: Model,
material: Material,
isTransparent: boolean = false,
isFrustumCulled: boolean = true,
isDoubleSided: boolean = false,
isCastShadow: boolean = false,
isReceiveShadow: boolean = false,
isClone: boolean = true,
) => {
model.traverse((child: THREE.Object3D) => {
!isFrustumCulled ? (child.frustumCulled = false) : null;
if (child instanceof THREE.Mesh) {
child.castShadow = isCastShadow;
child.receiveShadow = isReceiveShadow;
material
&& (child.material = this.setMaterialOrCloneMaterial(
isClone,
material,
))
child.material.transparent = isTransparent;
isDoubleSided ? (child.material.side = THREE.DoubleSide) : null;
isReceiveShadow ? child.geometry.computeVertexNormals() : null; // https://discourse.threejs.org/t/gltf-model-shadows-not-receiving-with-gltfmeshstandardsgmaterial/24112/9
}
});
this.progress.addLoadedModel(); // Update the number of items loaded
return { model: model };
};
setMaterialOrCloneMaterial(isClone: boolean, material: Material) {
return isClone ? material.clone() : material;
}
addInstancedModel = () => {
...
};
// other methods
destroySingleton() {
...
}
}
Physics Factory: PhysicsGenerator
This factory has a single responsibility: creative physics properties for meshes.
// src/three/Experience/Utils/PhysicsGenerator/PhysicsGenerator.ts
import Experience from "@/three/Experience/Theater/Experience/Experience";
import * as CANNON from "cannon-es";
import CannonUtils from "@/utils/cannonUtils.js";
import type {
Quaternion,
PhysicsItemPosition,
PhysicsItemType,
PhysicsResources,
TrackName,
CannonObject,
} from "@/types/experience/experience.types";
import type { Scene, ConvexGeometry } from "@/types/three.types";
import type Progress from "@/three/Experience/Utils/Progress/Progress";
import type AudioGenerator from "@/three/Experience/Utils/AudioGenerator/AudioGenerator";
import type Physics from "@/three/Experience/Theater/Physics/Physics";
import type { physicsShape } from "./PhysicsGenerator.types"
let instance: PhysicsGenerator | null = null;
export default class PhysicsGenerator {
public experience: Experience;
public physics: Physics;
public currentScene: string | null = null;
public progress: Progress;
public audioGenerator: AudioGenerator;
constructor() {
// Singleton
if (instance) {
return instance;
}
instance = this;
this.experience = new Experience();
this.resources = this.experience.resources;
this.audioGenerator = this.experience.audioGenerator;
this.physics = this.experience.physics;
this.progress = this.experience.progress;
this.currentScene = this.experience.currentScene;
}
//#region add physics to an object
createItemPhysics(
source: PhysicsResources, // object containing physics info such as mass, shape, position....
convex?: ConvexGeometry | null = null,
allowSleep?: boolean = true,
isBodyToAdd?: boolean = true,
trackName?: TrackName = null,
sleepSpeedLimit?: number | null = null
) {
const setSpeedLimit = sleepSpeedLimit ?? 0.15;
// For this project I needed to detect if the user was in the Mont-Saint-Michel, Leap For Mankind, About or Archives scene.
const localCurrentScene = source.locations[this.currentScene]
? this.currentScene
: "about";
switch (source.type as physicsShape) {
case "box": {
const boxShape = new CANNON.Box(new CANNON.Vec3(...source.shape));
const boxBody = new CANNON.Body({
mass: source.mass,
position: new CANNON.Vec3(
source.locations[localCurrentScene].position.x,
source.locations[localCurrentScene].position.y,
source.locations[localCurrentScene].position.z
),
allowSleep: allowSleep,
shape: boxShape,
material: source.material
? source.material
: this.physics.physics.defaultMaterial,
sleepSpeedLimit: setSpeedLimit,
});
source.locations[localCurrentScene].quaternion
&& (boxBody.quaternion.y =
source.locations[localCurrentScene].quaternion.y);
this.physics.physics.addBody(boxBody);
this.updatedLoadedItem();
// Add optional SFX that will be played if the item collides with another physics item
trackName
&& this.audioGenerator.addEventListenersToObject(boxBody, TrackName);
return boxBody;
}
// Then it's basicly the same logic for all other cases
case "sphere": {
...
}
case "cylinder": {
...
}
case "plane": {
...
}
case "trigger": {
...
}
case "torus": {
...
}
case "trimesh": {
...
}
case "polyhedron": {
...
}
default:
...
break;
}
}
updatedLoadedItem() {
this.progress.addLoadedPhysicsItem(); // Update the number of item loaded (physics only)
}
//#endregion add physics to an object
// other
destroySingleton() {
...
}
}
FPS Capping
With over 100 models and approximately 150 physics items loaded in the main scene, Aurel’s Grand Theater required
performance-driven coding from the outset.
I were to rebuild the project today, I would leverage GPU computing much more intensively. However, when I started the
proof of concept in 2022, GPU computing for the web was still relatively new and not fully mature—at least, that was
my perception at the time. Rather than recoding everything, I worked with what I had, which also presented a great
personal challenge. In addition to using low-poly models and employing classic optimization techniques, I extensively
used instanced meshes for all small, reusable items—even those with physics. I also relied on many other
under-the-hood techniques to keep the performance as smooth as possible on this CPU-intensive website.
One particularly helpful approach I implemented was adaptive frame rates. By capping the FPS to different levels (60,
30, or 10), depending on whether the logic required rendering at those rates, I optimized performance. After all, some
logic doesn ‘t require rendering every frame. This is a simple yet effective technique that can easily be incorporated
into your own project.
Now, let ‘s take a look at the file responsible for managing time in the project.
// src/three/Experience/Utils/Time/Time.ts
import * as THREE from "three";
import EventEmitter from "@/three/Experience/Utils/EventEmitter/EventEmitter";
let instance: Time | null = null;
let animationFrameId: number | null = null;
const clock = new THREE.Clock();
export default class Time extends EventEmitter {
private lastTick60FPS: number = 0;
private lastTick30FPS: number = 0;
private lastTick10FPS: number = 0;
private accumulator60FPS: number = 0;
private accumulator30FPS: number = 0;
private accumulator10FPS: number = 0;
public start: number = 0;
public current: number = 0;
public elapsed: number = 0;
public delta: number = 0;
public delta60FPS: number = 0;
public delta30FPS: number = 0;
public delta10FPS: number = 0;
constructor() {
if (instance) {
return instance;
}
super();
instance = this;
}
tick() {
const currentTime: number = clock.getElapsedTime() * 1000;
this.delta = currentTime - this.current;
this.current = currentTime;
// Accumulate the time that has passed
this.accumulator60FPS += this.delta;
this.accumulator30FPS += this.delta;
this.accumulator10FPS += this.delta;
// Trigger uncapped tick event using the project's EventEmitter class
this.trigger("tick");
// Trigger 60FPS tick event
if (this.accumulator60FPS >= 1000 / 60) {
this.delta60FPS = currentTime - this.lastTick60FPS;
this.lastTick60FPS = currentTime;
// Same logic as "this.trigger("tick")" but for 60FPS
this.trigger("tick60FPS");
this.accumulator60FPS -= 1000 / 60;
}
// Trigger 30FPS tick event
if (this.accumulator30FPS >= 1000 / 30) {
this.delta30FPS = currentTime - this.lastTick30FPS;
this.lastTick30FPS = currentTime;
this.trigger("tick30FPS");
this.accumulator30FPS -= 1000 / 30;
}
// Trigger 10FPS tick event
if (this.accumulator10FPS >= 1000 / 10) {
this.delta10FPS = currentTime - this.lastTick10FPS;
this.lastTick10FPS = currentTime;
this.trigger("tick10FPS");
this.accumulator10FPS -= 1000 / 10;
}
animationFrameId = window.requestAnimationFrame(() => {
this.tick();
});
}
}
Then, in the Experience.ts
file, we simply place the methods according to the required FPS.
constructor() {
if (instance) {
return instance;
}
...
this.time = new Time();
...
// The game loops (here called tick) are updated when the EventEmitter class is triggered.
this.time.on("tick", () => {
this.update();
});
this.time.on("tick60FPS", () => {
this.update60();
});
this.time.on("tick30FPS", () => {
this.update30();
});
this.time.on("tick10FPS", () => {
this.update10();
});
}
update() {
this.renderer.update();
}
update60() {
this.camera.update60FPS();
this.world.update60FPS();
this.physics.update60FPS();
}
update30() {
this.physics.update30FPS();
this.world.update30FPS();
}
update10() {
this.physics.update10FPS();
this.world.update10FPS();
}
Inspired by techniques from the film industry, the transitions between the 3D game and the more traditionally
structured pages, such as the Case Studies, About, and Credits pages, were carefully designed to feel seamless and
cinematic.
The first-time visit animation provides context and immerses users into the website experience. Meanwhile, the other
page transitions play a crucial role in ensuring a smooth shift between the game and the more conventional layout of
the Case Studies and About page, preserving immersion while naturally guiding users from one experience to the next.
Without these transitions, it would feel like abruptly jumping between two entirely different worlds.
I’ll do a deep dive into the code for the animation when the user returns from the basement level. It’s a bit simpler
than the other cinematic transitions but the underlying logic is the same, which makes it easier for you to adapt it
to another project.
The init
method, called from another file, initiates the creation of the animation. At first, we set the path for the
animation, then the timeline.
init() {
this.camera = this.experience.camera.instance;
this.initPath();
}
initPath() {
// create the path for the camera
const pathPoints = new CatmullRomCurve3([
new Vector3(CAMERA_POSITION_SEAT[0], CAMERA_POSITION_SEAT[1], 15),
new Vector3(5.12, 4, 8.18),
new Vector3(...RETURNING_PLAYER_CAMERA_FINAL_POSITION),
]);
// init the timeline
this.initTimeline(pathPoints);
}
initTimeline(path: CatmullRomCurve3) {
...
}
The timeline animation is split into two: a) The camera moves vertically from the basement to the theater, above the
seats.
...
initTimeline(path: CatmullRomCurve3) {
// get the points
const pathPoints = path.getPoints(30);
// create the gsap timeline
this.timelineAnimation
// set the initial position
.set(this.camera.position, {
x: CAMERA_POSITION_SEAT[0],
y: CAMERA_POSITION_SEAT[1] - 3,
z: 15,
})
.add(() => {
this.camera.lookAt(3.5, 1, 0);
})
// Start the animation! In this case the camera is moving from the basement to above the seat
.to(this.camera.position, {
x: CAMERA_POSITION_SEAT[0],
y: CAMERA_POSITION_SEAT[1],
z: 15,
duration: 3,
ease: "elastic.out(0.1,0.1)",
})
.to(
this.camera.position,
{
...
},
)
...
}
b) The camera follows a path while smoothly transitioning its view to the final location.
.to(
this.camera.position,
{
// then we use motion path to move the camera to the player behind the raccoon
motionPath: {
path: pathPoints,
curviness: 0,
autoRotate: false,
},
ease: "power1.inOut",
duration: DURATION_RETURNING_FORWARD,
onUpdate: function () {
const progress = this.progress();
// wait until progress reaches a certain point to rotate to the camera at the player LookAt
if (
progress >=
1 -
DURATION_LOOKAT_RETURNING_FORWARD /
DURATION_RETURNING_FORWARD &&
!this.lookAtTransitionStarted
) {
this.lookAtTransitionStarted = true;
// Create a new Vector3 to store the current look direction
const currentLookAt = new Vector3();
// Get the current camera's forward direction (where it's looking)
instance!.camera.getWorldDirection(currentLookAt);
// Extend the look direction by 100 units and add the camera's position
// This creates a point in space that the camera is currently looking at
currentLookAt.multiplyScalar(100).add(instance!.camera.position);
// smooth lookAt animation
createSmoothLookAtTransition(
currentLookAt,
new Vector3(...RETURNING_PLAYER_CAMERA_FINAL_LOOKAT),
DURATION_LOOKAT_RETURNING_FORWARD,
this.camera
);
}
},
},
)
.add(() => {
// animation is completed, you can add some code here
});
As you noticed, I used a utility function called smoothLookAtTransition
since I needed this functionality in multiple places.
With everything ready, the animation sequence is run when playAnimation()
is triggered.
playAnimation() {
// first set the position of the player
this.setPositionPlayer();
// then play the animation
this.timelineAnimation.play();
}
setPositionPlayer() {
// an simple utils to update the position of the player when the user land in the scene, return or switch scene.
setPlayerPosition(this.experience, {
position: PLAYER_POSITION_RETURNING,
quaternion: RETURNING_PLAYER_QUATERNION,
rotation: RETURNING_PLAYER_ROTATION,
});
}
Scroll-Triggered Animations: Showcasing Books on About Pages
While the game is fun and filled with details, the case studies and about pages are crucial to the overall experience,
even though they follow a more standardized format. These pages still have their own unique appeal. They are filled
with subtle details and animations, particularly scroll-triggered effects such as split text animations when
paragraphs enter the viewport, along with fade-out effects on SVGs and other assets. These animations create a vibe
that mirrors the mysterious yet intriguing atmosphere of the game, inviting visitors to keep scrolling and exploring.
While I can’t cover every animation in detail, I ‘d like to share the technical approach behind the book animations
featured on the about page. This effect blends DOM scroll event tracking with a Three.js scene, creating a seamless
interaction between the user ‘s scrolling behavior and the 3D-rendered books. As visitors scroll down the page, the
books transition elegantly and respond dynamically to their movement.
Before we dive into the Three.js
file, let ‘s look into the Vue
component.
//src/components/BookGallery/BookGallery.vue
<template>
<!-- the ID is used in the three.js file -->
<div class="book-gallery" id="bookGallery" ref="bookGallery"></div>
</template>
<script setup lang="ts">
import { onBeforeUnmount, onMounted, onUnmounted, ref } from "vue";
import gsap from "gsap";
import { ScrollTrigger } from "gsap/ScrollTrigger";
import type { BookGalleryProps } from "./types";
gsap.registerPlugin(ScrollTrigger);
const props = withDefaults(defineProps<BookGalleryProps>(), {});
const bookGallery = ref<HTMLBaseElement | null>(null);
const setupScrollTriggers = () => {
...
};
const triggerAnimation = (index: number) => {
...
};
onMounted(() => {
setupScrollTriggers();
});
onUnmounted(() => {
...
});
</script>
<style lang="scss" scoped>
.book-gallery {
position: relative;
height: 400svh; // 1000svh * 4 books
}
</style>
Thresholds are defined for each book to determine which one will be active – that is, the book that will face the
camera.
// src/three/Experience/Basement/World/Books/Books.ts
import * as THREE from "three";
import Experience from "@/three/Experience/Basement/Experience/Experience";
import { SCROLL_RATIO } from "@/constant/scroll";
import { gsap } from "gsap";
import type { Book } from "./books.types";
import type { Material, Scene, Texture, ThreeGroup } from "@/types/three.types";
import type { Sizes } from "@/three/Experience/Utils/Sizes/types";
import type LoadModel from "@/three/Experience/factories/LoadModel/LoadModel";
import type MaterialGenerator from "@/three/Experience/factories/MaterialGenerator/BasicMaterialGenerator";
import type Resources from "@/three/Experience/Utils/Ressources/Resources";
const GSAP_EASE = "power2.out";
const GSAP_DURATION = 1;
const NB_OF_VIEWPORTS_BOOK_SECTION = 5;
let instance: Books | null = null;
export default class Books {
public scene: Scene;
public experience: Experience;
public resources: Resources;
public loadModel: LoadModel;
public sizes: Sizes;
public materialGenerator: MaterialGenerator;
public resourceDiffuse: Texture;
public resourceNormal: Texture;
public bakedMaterial: Material;
public startingPostionY: number;
public originalPosition: Book[];
public activeIndex: number = 0;
public isAnimationRunning: boolean = false;
public bookGalleryElement: HTMLElement | null = null;
public bookSectionHeight: number;
public booksGroup: ThreeGroup;
constructor() {
if (instance) {
return instance;
}
instance = this;
this.experience = new Experience();
this.scene = this.experience.sceneSecondary; // I am using a second scene for the books, so it's not affected by the primary scene (basement in the background)
this.sizes = this.experience.sizes;
this.resources = this.experience.resources;
this.materialGenerator = this.experience.materialGenerator;
this.init();
}
init() {
...
}
initModels() {
...
}
findPosition() {
...
}
setBookSectionHeight() {
...
}
initBooks() {
...
}
initBook() {
...
}
createAnimation() {
...
}
toggleIsAnimationRunning() {
...
}
...
destroySingleton() {
...
}
}
When the file is initialized, we set up the textures and positions of the books.
init() {
this.initModels();
this.findPosition();
this.setBookSectionHeight();
this.initBooks();
}
initModels() {
this.originalPosition = [
{
name: "book1",
meshName: null, // the name of the mesh from Blender will dynamically be written here
position: { x: 0, y: -0, z: 20 },
rotation: { x: 0, y: Math.PI / 2.2, z: 0 }, // some rotation on y axis so it looks more natural when the books are pilled
},
{
name: "book2",
meshName: null,
position: { x: 0, y: -0.25, z: 20 },
rotation: { x: 0, y: Math.PI / 1.8, z: 0 },
},
{
name: "book3",
meshName: null,
position: { x: 0, y: -0.52, z: 20 },
rotation: { x: 0, y: Math.PI / 2, z: 0 },
},
{
name: "book4",
meshName: null,
position: { x: 0, y: -0.73, z: 20 },
rotation: { x: 0, y: Math.PI / 2.3, z: 0 },
},
];
this.resourceDiffuse = this.resources.items.bookDiffuse;
this.resourceNormal = this.resources.items.bookNormal;
// a reusable class to set the material and normal map
this.bakedMaterial = this.materialGenerator.setStandardMaterialAndNormal(
this.resourceDiffuse,
this.resourceNormal
);
}
//#region position of the books
// Finds the initial position of the book gallery in the DOM
findPosition() {
this.bookGalleryElement = document.getElementById("bookGallery");
if (this.bookGalleryElement) {
const rect = this.bookGalleryElement.getBoundingClientRect();
this.startingPostionY = (rect.top + window.scrollY) / 200;
}
}
// Sets the height of the book section based on viewport and scroll ratio
setBookSectionHeight() {
this.bookSectionHeight =
this.sizes.height * NB_OF_VIEWPORTS_BOOK_SECTION * SCROLL_RATIO;
}
//#endregion position of the books
Each book mesh is created and added to the scene as a THREE.Group
.
Each time a book enters
or reenters
its thresholds, the triggers from the Vue
file run the animation createAnimation
in this file, which rotates the active book in front of the camera and stacks the other books into a pile.
The game is the main attraction of the website. The entire concept began back in 2022, when I set out to build a small
mini-game where you could jump on tables and smash things and it was my favorite part to work on.
Beyond being fun to develop, the interactive physics elements make the experience more engaging, adding a whole new
layer of excitement and exploration that simply isn’t possible in a flat, static environment.
While I can ‘t possibly cover all the physics-related elements, one of my favorites is the rope system near the menu.
It’s a subtle detail, but it was one of the first things I coded when I started leaning into a more theatrical,
artistic direction.
The ropes were also built with performance in mind—optimized to look and behave convincingly without dragging down the
framerate.
This is the base file for the meshes:
// src/three/Experience/Theater/World/Theater/Rope/RopeModel.ts
import * as THREE from "three";
import Experience from "@/three/Experience/Theater/Experience/Experience";
import RopeMaterialGenerator from "@/three/Experience/Factories/MaterialGenerator/RopeMaterialGenerator";
import ropesLocation from "./ropesLocation.json";
import type { Location, List } from "@/types/experience/experience.types";
import type { Scene, Resources, Physics, RopeMesh, CurveQuad } from "@/types/three.types";
let instance: RopeModel | null = null;
export default class RopeModel {
public scene: Scene;
public experience: Experience;
public resources: Resources;
public physics: Physics;
public material: Material;
public list: List;
public ropeMaterialGenerator: RopeMaterialGenerator;
public ropeLength: number = 20;
public ropeRadius: number = 0.02;
public ropeRadiusSegments: number = 8;
constructor() {
// Singleton
if (instance) {
return instance;
}
instance = this;
this.experience = new Experience();
this.scene = this.experience.scene;
this.resources = this.experience.resources;
this.physics = this.experience.physics;
this.ropeMaterialGenerator = new RopeMaterialGenerator();
this.ropeLength = this.experience.physics.rope.numberOfSpheres || 20;
this.ropeRadius = 0.02;
this.ropeRadiusSegments = 8;
this.list = {
rope: [],
};
this.initRope();
}
initRope() {
...
}
createRope() {
...
}
setArrayOfVertor3() {
...
}
setYValues() {
...
}
setMaterial() {
...
}
addRopeToScene() {
...
}
//#region update at 60FPS
update() {
...
}
updateLineGeometry() {
...
}
//#endregion update at 60FPS
destroySingleton() {
...
}
}
Mesh creation is initiated inside the constructor.
// src/three/Experience/Theater/World/Theater/Rope/RopeModel.ts
constructor() {
...
this.initRope();
}
initRope() {
// Generate the material that will be used for all ropes
this.setMaterial();
// Create a rope at each location specified in the ropesLocation configuration
ropesLocation.forEach((location) => {
this.createRope(location);
});
}
createRope(location: Location) {
// Generate the curve that defines the rope's path
const curveQuad = this.setArrayOfVertor3();
this.setYValues(curveQuad);
const tube = new THREE.TubeGeometry(
curveQuad,
this.ropeLength,
this.ropeRadius,
this.ropeRadiusSegments,
false
);
const rope = new THREE.Mesh(tube, this.material);
rope.geometry.attributes.position.needsUpdate = true;
// Add the rope to the scene and set up its physics. I'll explain it later.
this.addRopeToScene(rope, location);
}
setArrayOfVertor3() {
const arrayLimit = this.ropeLength;
const setArrayOfVertor3 = [];
// Create points in a vertical line, spaced 1 unit apart
for (let index = 0; index < arrayLimit; index++) {
setArrayOfVertor3.push(new THREE.Vector3(10, 9 - index, 0));
if (index + 1 === arrayLimit) {
return new THREE.CatmullRomCurve3(
setArrayOfVertor3,
false,
"catmullrom",
0.1
);
}
}
}
setYValues(curve: CurveQuad) {
// Set each point's Y value to its index, creating a vertical line
for (let i = 0; i < curve.points.length; i++) {
curve.points[i].y = i;
}
}
setMaterial(){
...
}
Since the rope texture is used in multiple places, I use a factory pattern for efficiency.
...
setMaterial() {
this.material = this.ropeMaterialGenerator.generateRopeMaterial(
"rope",
0x3a301d, // Brown color
1.68, // Normal Repeat
0.902, // Normal Intensity
21.718, // Noise Strength
1.57, // UV Rotation
9.14, // UV Height
this.resources.items.ropeDiffuse, // Diffuse texture map
this.resources.items.ropeNormal // Normal map for surface detail
);
}
// src/three/Experience/Shaders/Rope/vertex.glsl
uniform float uNoiseStrength; // Controls the intensity of noise effect
uniform float uNormalIntensity; // Controls the strength of normal mapping
uniform float uNormalRepeat; // Controls the tiling of normal map
uniform vec3 uLightColor; // Color of the light source
uniform float uShadowStrength; // Intensity of shadow effect
uniform vec3 uLightPosition; // Position of the light source
uniform float uvRotate; // Rotation angle for UV coordinates
uniform float uvHeight; // Height scaling for UV coordinates
uniform bool isShadowBothSides; // Flag for double-sided shadow rendering
varying float vNoiseStrength; // Passes noise strength to fragment shader
varying float vNormalIntensity; // Passes normal intensity to fragment shader
varying float vNormalRepeat; // Passes normal repeat to fragment shader
varying vec2 vUv; // UV coordinates for texture mapping
varying vec3 vColorPrimary; // Primary color for the material
varying vec3 viewPos; // Position in view space
varying vec3 vLightColor; // Light color passed to fragment shader
varying vec3 worldPos; // Position in world space
varying float vShadowStrength; // Shadow strength passed to fragment shader
varying vec3 vLightPosition; // Light position passed to fragment shader
// Helper function to create a 2D rotation matrix
mat2 rotate(float angle) {
return mat2(cos(angle), -sin(angle), sin(angle), cos(angle));
}
void main() {
// Calculate rotation angle and its sine/cosine components
float angle = 1.0 * uvRotate;
float s = sin(angle);
float c = cos(angle);
// Create rotation matrix for UV coordinates
mat2 rotationMatrix = mat2(c, s, -s, c);
// Define pivot point for UV rotation
vec2 pivot = vec2(0.5, 0.5);
// Transform vertex position to clip space
gl_Position = projectionMatrix * viewMatrix * modelMatrix * vec4(position, 1.0);
// Apply rotation and height scaling to UV coordinates
vUv = rotationMatrix * (uv - pivot) + pivot;
vUv.y *= uvHeight;
// Pass various parameters to fragment shader
vNormalRepeat = uNormalRepeat;
vNormalIntensity = uNormalIntensity;
viewPos = vec3(0.0, 0.0, 0.0); // Initialize view position
vNoiseStrength = uNoiseStrength;
vLightColor = uLightColor;
vShadowStrength = uShadowStrength;
vLightPosition = uLightPosition;
}
Once the material is created and added to the mesh, the addRopeToScene
function adds the rope to the scene, then calls the addPhysicsToRope
function from the physics file.
// src/three/Experience/Theater/World/Theater/Rope/RopeModel.ts
addRopeToScene(mesh: Mesh, location: Location) {
this.list.rope.push(mesh); //Add the rope to an array, which will be used by the physics file to update the mesh
this.scene.add(mesh);
this.physics.rope.addPhysicsToRope(location); // same as src/three/Experience/Theater/Physics/Theater/Rope/Rope.addPhysicsToRope(location)
}
Let ‘s now focus on the physics file.
// src/three/Experience/Theater/Physics/Theater/Rope/Rope.ts
import * as CANNON from "cannon-es";
import Experience from "@/three/Experience/Theater/Experience/Experience";
import type { Location } from "@/types/experience.types";
import type Physics from "@/three/Experience/Theater/Physics/Physics";
import type { Scene, SphereBody } from "@/types/three.types";
let instance: Rope | null = null;
const SIZE_SPHERE = 0.05;
const ANGULAR_DAMPING = 1;
const DISTANCE_BETWEEN_SPHERES = SIZE_SPHERE * 5;
const DISTANCE_BETWEEN_SPHERES_BOTTOM = 2.3;
const DISTANCE_BETWEEN_SPHERES_TOP = 6;
const LINEAR_DAMPING = 0.5;
const NUMBER_OF_SPHERES = 20;
export default class Rope {
public experience: Experience;
public physics: Physics;
public scene: Scene;
public list: list[];
constructor() {
// Singleton
if (instance) {
return instance;
}
instance = this;
this.experience = new Experience();
this.scene = this.experience.scene;
this.physics = this.experience.physics;
this.list = {
rope: [],
};
}
//#region add physics
addPhysicsToRope() {
...
}
setRopePhysics() {
...
}
setMassRope() {
...
}
setDistanceBetweenSpheres() {
...
}
setDistanceBetweenConstraints() {
...
}
addConstraints() {
...
}
//#endregion add physics
//#region update at 60FPS
update() {
...
}
loopRopeWithPhysics() {
...
}
updatePoints() {
...
}
//#endregion update at 60FPS
destroySingleton() {
...
}
}
The rope’s physics is created from the mesh file using the methods addPhysicsToRope
, called using this.physics.rope.addPhysicsToRope(location);.
addPhysicsToRope(location: Location) {
this.setRopePhysics(location);
}
setRopePhysics(location: Location) {
const sphereShape = new CANNON.Sphere(SIZE_SPHERE);
const rope = [];
let lastBody = null;
for (let index = 0; index < NUMBER_OF_SPHERES; index++) {
// Create physics body for each sphere in the rope. The spheres will be what collide with the player
const spherebody = new CANNON.Body({ mass: this.setMassRope(index) });
spherebody.addShape(sphereShape);
spherebody.position.set(
location.x,
location.y - index * DISTANCE_BETWEEN_SPHERES,
location.z
);
this.physics.physics.addBody(spherebody);
rope.push(spherebody);
spherebody.linearDamping = LINEAR_DAMPING;
spherebody.angularDamping = ANGULAR_DAMPING;
// Create constraints between consecutive spheres
lastBody !== null
? this.addConstraints(spherebody, lastBody, index)
: null;
lastBody = spherebody;
if (index + 1 === NUMBER_OF_SPHERES) {
this.list.rope.push(rope);
}
}
}
setMassRope(index: number) {
return index === 0 ? 0 : 2; // first sphere is fixed (mass 0)
}
setDistanceBetweenSpheres(index: number, locationY: number) {
return locationY - DISTANCE_BETWEEN_SPHERES * index;
}
setDistanceBetweenConstraints(index: number) {
// since the user only interact the spheres are the bottom, so the distance between the spheres is gradualy increasing from the bottom to the top//Since the user only interacts with the spheres that are at the bottom, the distance between the spheres is gradually increasing from the bottom to the top
if (index <= 2) {
return DISTANCE_BETWEEN_SPHERES * DISTANCE_BETWEEN_SPHERES_TOP;
}
if (index > 2 && index <= 8) {
return DISTANCE_BETWEEN_SPHERES * DISTANCE_BETWEEN_SPHERES_BOTTOM;
}
return DISTANCE_BETWEEN_SPHERES;
}
addConstraints(
sphereBody: CANNON.Body,
lastBody: CANNON.Body,
index: number
) {
this.physics.physics.addConstraint(
new CANNON.DistanceConstraint(
sphereBody,
lastBody,
this.setDistanceBetweenConstraints(index)
)
);
}
When configuring physics parameters, strategy is key. Although users won ‘t consciously notice during gameplay, they
can only interact with the lower portion of the rope. Therefore, I concentrated more physics detail where it matters –
by adding more spheres to the bottom of the rope.
Since the user only interacts with the bottom of the rope, the density of the physics sphere is higher at the bottom
of the rope than at the top of the rope.
Rope meshes are then updated every frame from the physics file.
//#region update at 60FPS
update() {
this.loopRopeWithPhysics();
}
loopRopeWithPhysics() {
for (let index = 0; index < this.list.rope.length; index++) {
this.updatePoints(this.list.rope[index], index);
}
}
updatePoints(element: CANNON.Body[], indexParent: number) {
element.forEach((item: CANNON.Body, index: number) => {
// Update the mesh with the location of each of the physics spheres
this.experience.world.rope.list.rope[
indexParent
].geometry.parameters.path.points[index].copy(item.position);
});
}
//#endregion update at 60FPS
Animations in the DOM – ticket tearing particles
While the website heavily relies on Three.js to create an immersive experience, many elements remain DOM-based. One of
my goals for this portfolio was to combine both worlds: the rich, interactive 3D environments and the efficiency of
traditional DOM elements. Furthermore, I genuinely enjoy coding DOM-based micro-interactions, so skipping out on them
wasn ‘t an option!
One of my favorite DOM animations is the ticket-tearing effect, especially the particles flying away. It ‘s subtle,
but adds a bit of charm. The effect is not only fun to watch but also relatively easy to adapt to other projects.
First, let ‘s look at the structure of the components.
TicketBase.vue
is a fairly simple file with minimal styling. It handles the tearing animation and a few basic functions. Everything
else related to the ticket such as the style is handled by other components passed through slots.
To make things clearer, I ‘ve cleaned up my TicketBase.vue
file a bit to highlight how the particle effect works.
The createParticles
function creates a few new <div>
elements, which act as the little particles. These divs are then appended to either the main part of the ticket or the
torn part.
const createParticles = (containerSelector: HTMLElement, direction: string) => {
const numParticles = 5;
for (let i = 0; i < numParticles; i++) {
const particle = document.createElement("div");
particle.className = "particle";
// Calculate left position based on index and add small random offset
const baseLeft = (i / numParticles) * 100;
const randomOffset = (Math.random() - 0.5) * 10;
particle.style.left = `calc(${baseLeft}% + ${randomOffset}%)`;
// Assign unique animation properties
const duration = Math.random() * 0.3 + 0.1;
const translateY = (i / numParticles) * -20 - 2;
const scale = Math.random() * 0.5 + 0.5;
const delay = ((numParticles - i - 1) / numParticles) * 0;
particle.style.animation = `flyAway ${duration}s ${delay}s ease-in forwards`;
particle.style.setProperty("--translateY", `${translateY}px`);
particle.style.setProperty("--scale", scale.toString());
if (direction === "bottom") {
particle.style.animation = `flyAwayBottom ${duration}s ${delay}s ease-in forwards`;
}
containerSelector.appendChild(particle);
// Remove particle after animation ends
particle.addEventListener("animationend", () => {
particle.remove();
});
}
};
The particles are animated using a CSS keyframes animation called flyAway
or flyAwayBottom
.
There are so many features, details easter eggs and animation I wanted to cover in this article, but it’s simply not
possible to go through everything as it would be too much and many deserve their own tutorial.
That said, here are some of my favorites to code. They definitely deserve a spot in this article.
Some features I had a blast working on: radial blur, cursor trail, particles, 404 page, paws/bird animation,
navigation animation, collision animation.
Reflections on Aurel’s Grand Theater
Even though it took longer than I originally anticipated, Aurel ‘s Grand Theater was an incredibly fun and rewarding
project to work on. Because it wasn ‘t a client project, it offered a rare opportunity to freely experiment, explore
new ideas, and push myself outside my comfort zone, without the usual constraints of budgets or deadlines.
Looking back, there are definitely things I ‘d approach differently if I were to start again. I ‘d spend more time
defining the art direction upfront, lean more heavily into GPU, and perhaps implement Rapier. But despite these
reflections, I had an amazing time building this project and I ‘m satisfied with the final result.
While recognition was never the goal, I ‘m deeply honored that the site was acknowledged. It received FWA of the Day,
Awwwards Site of the Day and Developer Award, as well as GSAP’s Site of the Week and Site of the Month.
I ‘m truly grateful for the recognition, and I hope this behind-the-scenes look and shared code snippets inspire you
in your own creative coding journey.
Bringing new tools into a workflow is always exciting—curiosity bumps up against the comfort of familiar methods. But when our longtime client, Chumbi Valley, came to us with their Valley Adventures project, we saw the perfect opportunity to experiment with Rive and craft cartoon-style animations that matched the playful spirit of the brand.
Rive is a powerful real-time interactive design tool with built-in support for interactivity through State Machines. In this guide, we’ll walk you through how we integrated a .riv file into a React environment and added mouse-responsive animations.
We’ll also walk through a modernized integration method using Rive’s newer Data Binding feature—our current preferred approach for achieving the same animation with less complexity and greater flexibility.
Animation Concept & File Preparation
Valley Adventures is a gamified Chumbi NFT staking program, where magical creatures called Chumbi inhabit an enchanted world. The visual direction leans heavily into fairytale book illustrations—vibrant colors, playful characters, and a whimsical, cartoon-like aesthetic.
To immediately immerse users in this world, we went with a full-section hero animation on the landing page. We split the animation into two parts:
an idle animation that brings the scene to life;
a cursor-triggered parallax effect, adding depth and interactivity.
Several elements animate simultaneously—background layers like rustling leaves and flickering fireflies, along with foreground characters that react to movement. The result is a dynamic, storybook-like experience that invites users to explore.
The most interesting—and trickiest—part of the integration was tying animations to mouse tracking. Rive provides a built-in way to handle this: by applying constraints with varying strengths to elements within a group that’s linked to Mouse Tracking, which itself responds to the cursor’s position.
However, we encountered a limitation with this approach: the HTML buttons layered above the Rive asset were blocking the hover state, preventing it from triggering the animation beneath.
To work around this, we used a more robust method that gave us finer control and avoided those problems altogether.
Here’s how we approached it:
Create four separate timelines, each with a single keyframe representing an extreme position of the animation group:
Far left
Far right
Top
Bottom
Add two animation layers, each responsible for blending between opposite keyframes:
Layer 1 blends the far-left and far-right timelines
Layer 2 blends the top and bottom timelines
Tie each layer’s blend amount to a numeric input—one for the X axis, one for the Y axis.
By adjusting the values of these inputs based on the cursor’s position, you can control how tightly the animation responds on each axis. This approach gives you a smoother, more customizable parallax effect—and prevents unexpected behavior caused by overlapping UI.
Once the animation is ready, simply export it as a .riv file—and leave the rest of the magic to the devs.
How We Did It: Integrating a Rive File into a React Project
Before we dive further, let’s clarify what a .riv file actually is.
A .riv file is the export format from the Rive editor. It can include:
vector graphics,
timeline animations,
a State Machine with input parameters.
In our case, we’re using a State Machine with two numeric inputs: Axis_X and Axis_Y. These inputs are tied to how we control animation in Rive, using values from the X and Y axes of the cursor’s position.
These inputs drive the movement of different elements—like the swaying leaves, fluttering fireflies, and even subtle character reactions—creating a smooth, interactive experience that responds to the user’s mouse.
Step-by-Step Integration
Step 1: Install the Rive React runtime
Install the official package:
npm install @rive-app/react-canvas
Step 2: Create an Animation Component
Create a component called RiveBackground.tsx to handle loading and rendering the animation.
This setup connects directly to the input values defined inside the State Machine, allowing us to update them dynamically in response to user interaction.
State Machine 1 — the name of your State Machine, exactly as defined in the Rive editor
Axis_X and Axis_Y — numeric inputs that control movement based on cursor position
0 — the initial (default) value for each input
☝️ Important: Make sure your .riv file includes the exact names: Axis_X, Axis_Y, and State Machine 1. These must match what’s defined in the Rive editor — otherwise, the animation won’t respond as expected.
Now you can use the RiveBackground like any other component:
<RiveBackground className="hero-background" />
Step 8: Preload the WASM File
To avoid loading the .wasm file at runtime—which can delay the initial render—you can preload it in App.tsx:
import riveWASMResource from '@rive-app/canvas/rive.wasm';
<link
rel="preload"
href={riveWASMResource}
as="fetch"
crossOrigin="anonymous"
/>
This is especially useful if you’re optimizing for first paint or overall performance.
Simple Parallax: A New Approach with Data Binding
In the first part of this article, we used a classic approach with a State Machine to create the parallax animation in Rive. We built four separate animations (top, bottom, left, right), controlled them using input variables, and blended their states to create smooth motion. This method made sense at the time, especially before Data Binding support was introduced.
But now that Data Binding is available in Rive, achieving the same effect is much simpler—just a few steps. Data binding in Rive is a system that connects editor elements to dynamic data and code via view models, enabling reactive, runtime-driven updates and interactions between design and development.
In this section, we’ll show how to refactor the original Rive file and code using the new approach.
Updating the Rive File
Remove the old setup:
Go to the State Machine.
Delete the input variables: top, bottom, left, right.
Remove the blending states and their associated animations.
Group the parallax layers:
Wrap all the parallax layers into a new group—e.g., ParallaxGroup.
Create binding parameters:
Select ParallaxGroup and add:
pointerX (Number)
pointerY (Number)
Bind coordinates:
In the properties panel, set:
X → pointerX
Y → pointerY
Now the group will move dynamically based on values passed from JavaScript.
The Updated JS Code
Before we dive into the updated JavaScript, let’s quickly define an important concept:
When using Data Binding in Rive, viewModelInstance refers to the runtime object that links your Rive file’s bindable properties (like pointerX or pointerY) to your app’s logic. In the Rive editor, you assign these properties to elements like positions, scales, or rotations. At runtime, your code accesses and updates them through the viewModelInstance—allowing for real-time, declarative control without needing a State Machine.
With that in mind, here’s how the new setup replaces the old input-driven logic:
Data Binding is a major step forward for interactive Rive animations. Effects like parallax can now be set up faster, more reliably, and with cleaner logic. We strongly recommend this approach for new projects.
Final Thoughts
So why did we choose Rive over Lottie for this project?
Interactivity: With Lottie, achieving the same level of interactivity would’ve required building a custom logic layer from scratch. With Rive, we got that behavior baked into the file—plug and play.
Optimization: Rive gives you more control over each asset inside the .riv file, and the output tends to be lighter overall.
Our biggest takeaway? Don’t be afraid to experiment with new tools—especially when they feel like the right fit for your project’s concept. Rive matched the playful, interactive vibe of Valley Adventures perfectly, and we’re excited to keep exploring what it can do.