برچسب: Logging

  • How to improve Serilog logging in .NET 6 by using Scopes | Code4IT

    How to improve Serilog logging in .NET 6 by using Scopes | Code4IT


    Logs are important. Properly structured logs can be the key to resolving some critical issues. With Serilog’s Scopes, you can enrich your logs with info about the context where they happened.

    Table of Contents

    Just a second! 🫷
    If you are here, it means that you are a software developer.
    So, you know that storage, networking, and domain management have a cost .

    If you want to support this blog, please ensure that you have disabled the adblocker for this site.
    I configured Google AdSense to show as few ADS as possible – I don’t want to bother you with lots of ads, but I still need to add some to pay for the resources for my site.

    Thank you for your understanding.
    Davide

    Even though it’s not one of the first things we usually set up when creating a new application, logging is a real game-changer in the long run.

    When an error occurred, if we have proper logging we can get more info about the context where it happened so that we can easily identify the root cause.

    In this article, we will use Scopes, one of the functionalities of Serilog, to create better logs for our .NET 6 application. In particular, we’re going to create a .NET 6 API application in the form of Minimal APIs.

    We will also use Seq, just to show you the final result.

    Adding Serilog in our Minimal APIs

    We’ve already explained what Serilog and Seq are in a previous article.

    To summarize, Serilog is an open source .NET library for logging. One of the best features of Serilog is that messages are in the form of a template (called Structured Logs), and you can enrich the logs with some value automatically calculated, such as the method name or exception details.

    To add Serilog to your application, you simply have to run dotnet add package Serilog.AspNetCore.

    Since we’re using Minimal APIs, we don’t have the StartUp file anymore; instead, we will need to add it to the Program.cs file:

    builder.Host.UseSerilog((ctx, lc) => lc
        .WriteTo.Console() );
    

    Then, to create those logs, you will need to add a specific dependency in your classes:

    public class ItemsRepository : IItemsRepository
    {
        private readonly ILogger<ItemsRepository> _logger;
    
        public ItemsRepository(ILogger<ItemsRepository> logger)
        {
            _logger = logger;
        }
    }
    

    As you can see, we’re injecting an ILogger<ItemsRepository>: specifying the related class automatically adds some more context to the logs that we will generate.

    Installing Seq and adding it as a Sink

    Seq is a logging platform that is a perfect fit for Serilog logs. If you don’t have it already installed, head to their download page and install it locally (you can even install it as a Docker container 🤩).

    In the installation wizard, you can select the HTTP port that will expose its UI. Once everything is in place, you can open that page on your localhost and see a page like this:

    Seq empty page on localhost

    On this page, we will see all the logs we write.

    But wait! ⚠ We still have to add Seq as a sink for Serilog.

    A sink is nothing but a destination for the logs. When using .NET APIs we can define our sinks both on the appsettings.json file and on the Program.cs file. We will use the second approach.

    First of all, you will need to install a NuGet package to add Seq as a sink: dotnet add package Serilog.Sinks.Seq.

    Then, you have to update the Serilog definition we’ve seen before by adding a .WriteTo.Seq instruction:

    builder.Host.UseSerilog((ctx, lc) => lc
        .WriteTo.Console()
        .WriteTo.Seq("http://localhost:5341")
        );
    

    Notice that we’ve specified also the port that exposes our Seq instance.

    Now, every time we log something, we will see our logs both on the Console and on Seq.

    How to add scopes

    The time has come: we can finally learn how to add Scopes using Serilog!

    Setting up the example

    For this example, I’ve created a simple controller, ItemsController, which exposes two endpoints: Get and Add. With these two endpoints, we are able to add and retrieve items stored in an in-memory collection.

    This class has 2 main dependencies: IItemsRepository and IUsersItemsRepository. Each of these interfaces has its own concrete class, each with a private logger injected in the constructor:

    public ItemsRepository(ILogger<ItemsRepository> logger)
    {
        _logger = logger;
    }
    

    and, similarly

    public UsersItemRepository(ILogger<UsersItemRepository> logger)
    {
        _logger = logger;
    }
    

    How do those classes use their own _logger instances?

    For example, the UsersItemRepository class exposes an AddItem method that adds a specific item to the list of items already possessed by a specific user.

    public void AddItem(string username, Item item)
    {
        if (!_usersItems.ContainsKey(username))
        {
            _usersItems.Add(username, new List<Item>());
            _logger.LogInformation("User was missing from the list. Just added");
        }
        _usersItems[username].Add(item);
        _logger.LogInformation("Added item for to the user's catalogue");
    }
    

    We are logging some messages, such as “User was missing from the list. Just added”.

    Something similar happens in the ItemsRepository class, where we have a GetItem method that returns the required item if it exists, and null otherwise.

    public Item GetItem(int itemId)
    {
        _logger.LogInformation("Retrieving item {ItemId}", itemId);
        return _allItems.FirstOrDefault(i => i.Id == itemId);
    }
    

    Finally, who’s gonna call these methods?

    [HttpPost(Name = "AddItems")]
    public IActionResult Add(string userName, int itemId)
    {
        var item = _itemsRepository.GetItem(itemId);
    
        if (item == null)
        {
            _logger.LogWarning("Item does not exist");
    
            return NotFound();
        }
        _usersItemsRepository.AddItem(userName, item);
    
        return Ok(item);
    }
    

    Ok then, we’re ready to run the application and see the result.

    When I call that endpoint by passing “davide” as userName and “1” as itemId, we can see these logs:

    Simple logging on Seq

    We can see the 3 log messages but they are unrelated one each other. In fact, if we expand the logs to see the actual values we’ve logged, we can see that only the “Retrieving item 1” log has some information about the item ID we want to associate with the user.

    Expanding logs on Seq

    Using BeginScope with Serilog

    Finally, it’s time to define the Scope.

    It’s as easy as adding a simple using statement; see how I added the scope to the Add method in the Controller:

    [HttpPost(Name = "AddItems")]
    public IActionResult Add(string userName, int itemId)
    {
        using (_logger.BeginScope("Adding item {ItemId} for user {UserName}", itemId, userName))
        {
            var item = _itemsRepository.GetItem(itemId);
    
            if (item == null)
            {
                _logger.LogWarning("Item does not exist");
    
                return NotFound();
            }
            _usersItemsRepository.AddItem(userName, item);
    
            return Ok(item);
        }
    }
    

    Here’s the key!

    using (_logger.BeginScope("Adding item {ItemId} for user {UserName}", itemId, userName))
    

    With this single instruction, we are actually performing 2 operations:

    1. we are adding a Scope to each message – “Adding item 1 for user davide”
    2. we are adding ItemId and UserName to each log entry that falls in this block, in every method in the method chain.

    Let’s run the application again, and we will see this result:

    Expanded logs on Seq with Scopes

    So, now you can use these new properties to get some info about the context of when this log happened, and you can use the ItemId and UserName fields to search for other related logs.

    You can also nest scopes, of course.

    Why scopes instead of Correlation ID?

    You might be thinking

    Why can’t I just use correlation IDs?

    Well, the answer is pretty simple: correlation IDs are meant to correlate different logs in a specific request, and, often, across services. You generally use Correlation IDs that represent a specific call to your API and act as a Request ID.

    For sure, that can be useful. But, sometimes, not enough.

    Using scopes you can also “correlate” distinct HTTP requests that have something in common.

    If I call 2 times the AddItem endpoint, I can filter both for UserName and for ItemId and see all the related logs across distinct HTTP calls.

    Let’s see a real example: I have called the endpoint with different values

    • id=1, username=“davide”
    • id=1, username=“luigi”
    • id=2, username=“luigi”

    Since the scope reference both properties, we can filter for UserName and discover that Luigi has added both Item1 and Item 2.

    Filtering logs by UserName

    At the same time, we can filter by ItemId and discover that the item with id = 2 has been added only once.

    Filtering logs by ItemId

    Ok, then, in the end, Scopes or Correlation IDs? The answer is simple:

    Both is good

    This article first appeared on Code4IT

    Read more

    As always, the best place to find the info about a library is its documentation.

    🔗 Serilog website

    If you prefer some more practical articles, I’ve already written one to help you get started with Serilog and Seq (and with Structured Logs):

    🔗 Logging with Serilog and Seq | Code4IT

    as well as one about adding Serilog to Console applications (which is slightly different from adding Serilog to .NET APIs)

    🔗 How to add logs on Console with .NET Core and Serilog | Code4IT

    Then, you might want to deep dive into Serilog’s BeginScope. Here’s a neat article by Nicholas Blumhardt. Also, have a look at the comments, you’ll find interesting points to consider

    🔗 The semantics of ILogger.BeginScope | Nicholas Blumhardt

    Finally, two must-read articles about logging best practices.

    The first one is by Thiago Nascimento Figueiredo:

    🔗 Logs – Why, good practices, and recommendations | Dev.to

    and the second one is by Llron Tal:

    🔗 9 Logging Best Practices Based on Hands-on Experience | Loom Systems

    Wrapping up

    In this article, we’ve added Scopes to our logs to enrich them with some common fields that can be useful to investigate in case of errors.

    Remember to read the last 3 links I’ve shared above, they’re pure gold – you’ll thank me later 😎

    Happy coding!

    🐧



    Source link

  • How to add Dependency Injection, Configurations, and Logging in a .NET 7 Console Application &vert; Code4IT

    How to add Dependency Injection, Configurations, and Logging in a .NET 7 Console Application | Code4IT


    By default, you cannot use Dependency Injection, custom logging, and configurations from settings in a Console Application. Unless you create a custom Host!

    Table of Contents

    Just a second! 🫷
    If you are here, it means that you are a software developer.
    So, you know that storage, networking, and domain management have a cost .

    If you want to support this blog, please ensure that you have disabled the adblocker for this site.
    I configured Google AdSense to show as few ADS as possible – I don’t want to bother you with lots of ads, but I still need to add some to pay for the resources for my site.

    Thank you for your understanding.
    Davide

    Sometimes, you just want to create a console application to run a complex script. Just because it is a “simple” console application, it doesn’t mean that you should not use best practices, such as using Dependency Injection.

    Also, you might want to test the code: Dependency Injection allows you to test the behavior of a class without having a strict dependency on the referenced concrete classes: you can use stubs and mocks, instead.

    In this article, we’re going to learn how to add Dependency Injection in a .NET 7 console application. The same approach can be used for other versions of .NET. We will also add logging, using Serilog, and configurations coming from an appsettings.json file.

    We’re going to start small, with the basic parts, and gradually move on to more complex scenarios. We’re gonna create a simple, silly console application: we will inject a bunch of services, and print a message on the console.

    We have a root class:

    public class NumberWorker
    {
        private readonly INumberService _service;
    
        public NumberWorker(INumberService service) => _service = service;
    
        public void PrintNumber()
        {
            var number = _service.GetPositiveNumber();
            Console.WriteLine($"My wonderful number is {number}");
        }
    }
    

    that injects an INumberService, implemented by NumberService:

    public interface INumberService
    {
        int GetPositiveNumber();
    }
    
    public class NumberService : INumberService
    {
        private readonly INumberRepository _repo;
    
        public NumberService(INumberRepository repo) => _repo = repo;
    
        public int GetPositiveNumber()
        {
            int number = _repo.GetNumber();
            return Math.Abs(number);
        }
    }
    

    which, in turn, uses an INumberRepository implemented by NumberRepository:

    public interface INumberRepository
    {
        int GetNumber();
    }
    
    public class NumberRepository : INumberRepository
    {
        public int GetNumber()
        {
            return -42;
        }
    }
    

    The console application will create a new instance of NumberWorker and call the PrintNumber method.

    Now, we have to build the dependency tree and inject such services.

    How to create an IHost to use a host for a Console Application

    The first step to take is to install some NuGet packages that will allow us to add a custom IHost container so that we can add Dependency Injection and all the customization we usually add in projects that have a StartUp (or a Program) class, such as .NET APIs.

    We need to install 2 NuGet packages: Microsoft.Extensions.Hosting.Abstractions and Microsoft.Extensions.Hosting will be used to create a new IHost that will be used to build the dependencies tree.

    By navigating your csproj file, you should be able to see something like this:

    <ItemGroup>
        <PackageReference Include="Microsoft.Extensions.Hosting" Version="7.0.1" />
        <PackageReference Include="Microsoft.Extensions.Hosting.Abstractions" Version="7.0.0" />
    </ItemGroup>
    

    Now we are ready to go! First, add the following using statements:

    using Microsoft.Extensions.DependencyInjection;
    using Microsoft.Extensions.Hosting;
    

    and then, within the Program class, add this method:

    private static IHost CreateHost() =>
      Host.CreateDefaultBuilder()
          .ConfigureServices((context, services) =>
          {
              services.AddSingleton<INumberRepository, NumberRepository>();
              services.AddSingleton<INumberService, NumberService>();
          })
          .Build();
    }
    

    Host.CreateDefaultBuilder() creates the default IHostBuilder – similar to the IWebHostBuilder, but without any reference to web components.

    Then we add all the dependencies, using services.AddSingleton<T, K>. Notice that it’s not necessary to add services.AddSingleton<NumberWorker>: when we will use the concrete instance, the dependency tree will be resolved, without the need of having an indication of the root itself.

    Finally, once we have everything in place, we call Build() to create a new instance of IHost.

    Now, we just have to run it!

    In the Main method, create the IHost instance by calling CreateHost(). Then, by using the ActivatorUtilities class (coming from the Microsoft.Externsions.DependencyInjection namespace), create a new instance of NumberWorker, so that you can call PrintNumber();

    private static void Main(string[] args)
    {
      IHost host = CreateHost();
      NumberWorker worker = ActivatorUtilities.CreateInstance<NumberWorker>(host.Services);
      worker.PrintNumber();
    }
    

    Now you are ready to run the application, and see the message on the console:

    Basic result on Console

    Read configurations from appsettings.json for a Console Library

    We want to make our system configurable and place our configurations in an appsettings.json file.

    As we saw in a recent article 🔗, we can use IOptions<T> to inject configurations in the constructor. For the sake of this article, I’m gonna use a POCO class, NumberConfig, that is mapped to a configuration section and injected into the classes.

    public class NumberConfig
    {
        public int DefaultNumber { get; set; }
    }
    

    Now we need to manually create an appsettings.json file within the project folder, and add a new section that will hold the values of the configuration:

    {
      "Number": {
        "DefaultNumber": -899
      }
    }
    

    and now we can add the configuration binding in our CreateHost() method, within the ConfigureServices section:

    services.Configure<NumberConfig>(context.Configuration.GetSection("Number"));
    

    Finally, we can update the NumberRepository to accept the configurations in input and use them to return the value:

    public class NumberRepository : INumberRepository
    {
        private readonly NumberConfig _config;
    
        public NumberRepository(IOptions<NumberConfig> options) => _config = options.Value;
    
        public int GetNumber() => _config.DefaultNumber;
    }
    

    Run the project to admire the result, and… BOOM! It will not work! You should see the message “My wonderful number is 0”, even though the number we set on the config file is -899.

    This happens because we must include the appsettings.json file in the result of the compilation. Right-click on that file, select the Properties menu, and set the “Copy to Output Directory” to “Copy always”:

    Copy always the appsettings file to the Output Directory

    Now, build and run the project, and you’ll see the correct message: “My wonderful number is 899”.

    Clearly, the same values can be accessed via IConfigurations.

    Add Serilog logging to log on Console and File

    Finally, we can add Serilog logs to our console applications – as well as define Sinks.

    To add Serilog, you first have to install these NuGet packages:

    • Serilog.Extensions.Hosting and Serilog.Formatting.Compact to add the basics of Serilog;
    • Serilog.Settings.Configuration to read logging configurations from settings (if needed);
    • Serilog.Sinks.Console and Serilog.Sinks.File to add the Console and the File System as Sinks.

    Let’s get back to the CreateHost() method, and add a new section right after ConfigureServices:

    .UseSerilog((context, services, configuration) => configuration
        .ReadFrom.Configuration(context.Configuration)
        .ReadFrom.Services(services)
        .Enrich.FromLogContext()
        .WriteTo.Console()
        .WriteTo.File($"report-{DateTimeOffset.UtcNow.ToString("yyyy-MM-dd-HH-mm-ss")}.txt", restrictedToMinimumLevel: LogEventLevel.Warning)
        )
    

    Here we’re telling that we need to read the config from Settings, add logging context, and write both on Console and on File (only if the log message level is greater or equal than Warning).

    Then, add an ILogger here and there, and admire the final result:

    Serilog Logging is visible on the Console

    Final result

    To wrap up, here’s the final implementation of the Program class and the
    CreateHost method:

    private static void Main(string[] args)
    {
        IHost host = CreateHost();
        NumberWorker worker = ActivatorUtilities.CreateInstance<NumberWorker>(host.Services);
        worker.PrintNumber();
    }
    
    private static IHost CreateHost() =>
      Host
      .CreateDefaultBuilder()
      .ConfigureServices((context, services) =>
      {
          services.Configure<NumberConfig>(context.Configuration.GetSection("Number"));
    
          services.AddSingleton<INumberRepository, NumberRepository>();
          services.AddSingleton<INumberService, NumberService>();
      })
      .UseSerilog((context, services, configuration) => configuration
          .ReadFrom.Configuration(context.Configuration)
          .ReadFrom.Services(services)
          .Enrich.FromLogContext()
          .WriteTo.Console()
          .WriteTo.File($"report-{DateTimeOffset.UtcNow.ToString("yyyy-MM-dd-HH-mm-ss")}.txt", restrictedToMinimumLevel: LogEventLevel.Warning)
          )
      .Build();
    

    Further readings

    As always, a few resources to learn more about the topics discussed in this article.

    First and foremost, have a look at this article with a full explanation of Generic Hosts in a .NET Core application:

    🔗 .NET Generic Host in ASP.NET Core | Microsoft docs

    Then, if you recall, we’ve already learned how to print Serilog logs to the Console:

    🔗 How to log to Console with .NET Core and Serilog | Code4IT

    This article first appeared on Code4IT 🐧

    Lastly, we accessed configurations using IOptions<NumberConfig>. Did you know that there are other ways to access config?

    🔗 Understanding IOptions, IOptionsMonitor, and IOptionsSnapshot in .NET 7 | Code4IT

    as well as defining configurations for your project?

    🔗 3 (and more) ways to set configuration values in .NET | Code4IT

    Wrapping up

    In this article, we’ve learned how we can customize a .NET Console application to use dependency injection, external configurations, and Serilog logging.

    I hope you enjoyed this article! Let’s keep in touch on Twitter or LinkedIn! 🤜🤛

    Happy coding!

    🐧





    Source link

  • Easy logging management with Seq and ILogger in ASP.NET &vert; Code4IT

    Easy logging management with Seq and ILogger in ASP.NET | Code4IT


    Seq is one of the best Log Sinks out there : it’s easy to install and configure, and can be added to an ASP.NET application with just a line of code.

    Table of Contents

    Just a second! 🫷
    If you are here, it means that you are a software developer.
    So, you know that storage, networking, and domain management have a cost .

    If you want to support this blog, please ensure that you have disabled the adblocker for this site.
    I configured Google AdSense to show as few ADS as possible – I don’t want to bother you with lots of ads, but I still need to add some to pay for the resources for my site.

    Thank you for your understanding.
    Davide

    Logging is one of the most essential parts of any application.

    Wouldn’t it be great if we could scaffold and use a logging platform with just a few lines of code?

    In this article, we are going to learn how to install and use Seq as a destination for our logs, and how to make an ASP.NET 8 API application send its logs to Seq by using the native logging implementation.

    Seq: a sink and dashboard to manage your logs

    In the context of logging management, a “sink” is a receiver of the logs generated by one or many applications; it can be a cloud-based system, but it’s not mandatory: even a file on your local file system can be considered a sink.

    Seq is a Sink, and works by exposing a server that stores logs and events generated by an application. Clearly, other than just storing the logs, Seq allows you to view them, access their details, perform queries over the collection of logs, and much more.

    It’s free to use for individual usage, and comes with several pricing plans, depending on the usage and the size of the team.

    Let’s start small and install the free version.

    We have two options:

    1. Download it locally, using an installer (here’s the download page);
    2. Use Docker: pull the datalust/seq image locally and run the container on your Docker engine.

    Both ways will give you the same result.

    However, if you already have experience with Docker, I suggest you use the second approach.

    Once you have Docker installed and running locally, open a terminal.

    First, you have to pull the Seq image locally (I know, it’s not mandatory, but I prefer doing it in a separate step):

    Then, when you have it downloaded, you can start a new instance of Seq locally, exposing the UI on a specific port.

    docker run --name seq -d --restart unless-stopped -e ACCEPT_EULA=Y -p 5341:80 datalust/seq:latest
    

    Let’s break down the previous command:

    • docker run: This command is used to create and start a new Docker container.
    • --name seq: This option assigns the name seq to the container. Naming containers can make them easier to manage.
    • -d: This flag runs the container in detached mode, meaning it runs in the background.
    • --restart unless-stopped: This option ensures that the container will always restart unless it is explicitly stopped. This is useful for ensuring that the container remains running even after a reboot or if it crashes.
    • -e ACCEPT_EULA=Y: This sets an environment variable inside the container. In this case, it sets ACCEPT_EULA to Y, which likely indicates that you accept the End User License Agreement (EULA) for the software running in the container.
    • -p 5341:80: This maps port 5341 on your host machine to port 80 in the container. This allows you to access the service running on port 80 inside the container via port 5341 on your host.
    • datalust/seq:latest: This specifies the Docker image to use for the container. datalust/seq is the image name, and latest is the tag, indicating that you want to use the latest version of this image.

    So, this command runs a container named seq in the background, ensures it restarts unless stopped, sets an environment variable to accept the EULA, maps a host port to a container port, and uses the latest version of the datalust/seq image.

    It’s important to pay attention to the used port: by default, Seq uses port 5341 to interact with the UI and the API. If you prefer to use another port, feel free to do that – just remember that you’ll need some additional configuration.

    Now that Seq is installed on your machine, you can access its UI. Guess what? It’s on localhost:5341!

    Seq brand new instance

    However, Seq is “just” a container for our logs – but we have to produce them.

    A sample ASP.NET API project

    I’ve created a simple API project that exposes CRUD operations for a data model stored in memory (we don’t really care about the details).

    [ApiController]
    [Route("[controller]")]
    public class BooksController : ControllerBase
    {
        public BooksController()
        {
    
        }
    
        [HttpGet("{id}")]
        public ActionResult<Book> GetBook([FromRoute] int id)
        {
    
            Book? book = booksCatalogue.SingleOrDefault(x => x.Id == id);
            return book switch
            {
                null => NotFound(),
                _ => Ok(book)
            };
        }
    }
    

    As you can see, the details here are not important.

    Even the Main method is the default one:

    var builder = WebApplication.CreateBuilder(args);
    
    builder.Services.AddControllers();
    
    builder.Services.AddEndpointsApiExplorer();
    builder.Services.AddSwaggerGen();
    
    var app = builder.Build();
    
    if (app.Environment.IsDevelopment())
    {
        app.UseSwagger();
        app.UseSwaggerUI();
    }
    
    app.UseHttpsRedirection();
    
    app.MapControllers();
    
    app.Run();
    

    We have the Controllers, we have Swagger… well, nothing fancy.

    Let’s mix it all together.

    How to integrate Seq with an ASP.NET application

    If you want to use Seq in an ASP.NET application (may it be an API application or whatever else), you have to add it to the startup pipeline.

    First, you have to install the proper NuGet package: Seq.Extensions.Logging.

    The Seq.Extensions.Logging NuGet package

    Then, you have to add it to your Services, calling the AddSeq() method:

    var builder = WebApplication.CreateBuilder(args);
    
    builder.Services.AddControllers();
    
    builder.Services.AddEndpointsApiExplorer();
    builder.Services.AddSwaggerGen();
    
    + builder.Services.AddLogging(lb => lb.AddSeq());
    
    var app = builder.Build();
    

    Now, Seq is ready to intercept whatever kind of log arrives at the specified port (remember, in our case, we are using the default one: 5341).

    We can try it out by adding an ILogger to the BooksController constructor:

    private readonly ILogger<BooksController> _logger;
    
    public BooksController(ILogger<BooksController> logger)
    {
        _logger = logger;
    }
    

    So that we can use the _logger instance to create logs as we want, using the necessary Log Level:

    [HttpGet("{id}")]
    public ActionResult<Book> GetBook([FromRoute] int id)
    {
        _logger.LogInformation("I am Information");
        _logger.LogWarning("I am Warning");
        _logger.LogError("I am Error");
        _logger.LogCritical("I am Critical");
    
        Book? book = booksCatalogue.SingleOrDefault(x => x.Id == id);
        return book switch
        {
            null => NotFound(),
            _ => Ok(book)
        };
    }
    

    Log messages on Seq

    Using Structured Logging with ILogger and Seq

    One of the best things about Seq is that it automatically handles Structured Logging.

    [HttpGet("{id}")]
    public ActionResult<Book> GetBook([FromRoute] int id)
    {
        _logger.LogInformation("Looking if in my collection with {TotalBooksCount} books there is one with ID {SearchedId}"
     , booksCatalogue.Count, id);
    
        Book? book = booksCatalogue.SingleOrDefault(x => x.Id == id);
        return book switch
        {
            null => NotFound(),
            _ => Ok(book)
        };
    }
    

    Have a look at this line:

    _logger.LogInformation("Looking if in my collection with {TotalBooksCount} books there is one with ID {SearchedId}"
     , booksCatalogue.Count, id);
    

    This line generates a string message, replaces all the placeholders, and, on top of that, creates two properties, SearchedId and TotalBooksCount; you can now define queries using these values.

    Structured Logs in Seq allow you to view additional logging properties

    Further readings

    I have to admit it: logging management is one of my favourite topics.

    I’ve already written a sort of introduction to Seq in the past, but at that time, I did not use the native ILogger, but Serilog, a well-known logging library that added some more functionalities on top of the native logger.

    🔗 Logging with Serilog and Seq | Code4IT

    This article first appeared on Code4IT 🐧

    In particular, Serilog can be useful for propagating Correlation IDs across multiple services so that you can fetch all the logs generated by a specific operation, even though they belong to separate applications.

    🔗 How to log Correlation IDs in .NET APIs with Serilog

    Feel free to search through my blog all the articles related to logging – I’m sure you will find interesting stuff!

    Wrapping up

    I think Seq is the best tool for local development: it’s easy to download and install, supports structured logging, and can be easily added to an ASP.NET application with just a line of code.

    I usually add it to my private projects, especially when the operations I run are complex enough to require some well-structured log.

    Given how it’s easy to install, sometimes I use it for my work projects too: when I have to fix a bug, but I don’t want to use the centralized logging platform (since it’s quite complex to use), I add Seq as a destination sink, run the application, and analyze the logs in my local machine. Then, of course, I remove its reference, as I want it to be just a discardable piece of configuration.

    I hope you enjoyed this article! Let’s keep in touch on LinkedIn, Twitter or BlueSky! 🤜🤛

    Happy coding!

    🐧





    Source link

  • HTTP Logging in ASP.NET: how to automatically log all incoming HTTP requests (and its downsides!)

    HTTP Logging in ASP.NET: how to automatically log all incoming HTTP requests (and its downsides!)


    Aren’t you tired of adding manual logs to your HTTP APIs to log HTTP requests and responses? By using a built-in middleware in ASP.NET, you will be able to centralize logs management and have a clear view of all the incoming HTTP requests.

    Table of Contents

    Just a second! 🫷
    If you are here, it means that you are a software developer.
    So, you know that storage, networking, and domain management have a cost .

    If you want to support this blog, please ensure that you have disabled the adblocker for this site.
    I configured Google AdSense to show as few ADS as possible – I don’t want to bother you with lots of ads, but I still need to add some to pay for the resources for my site.

    Thank you for your understanding.
    Davide

    Whenever we publish a service, it is important to add proper logging to the application. Logging helps us understand how the system works and behaves, and it’s a fundamental component that allows us to troubleshoot problems that occur during the actual usage of the application.

    In this blog, we have talked several times about logging. However, we mostly focused on the logs that were written manually.

    In this article, we will learn how to log incoming HTTP requests to help us understand how our APIs are being used from the outside.

    Scaffolding the empty project

    To showcase this type of logging, I created an ASP.NET API. It’s a very simple application with CRUD operations on an in-memory collection.

    [ApiController]
    [Route("[controller]")]
    public class BooksController : ControllerBase
    {
        private readonly List<Book> booksCatalogue = Enumerable.Range(1, 5).Select(index => new Book
        {
            Id = index,
            Title = $"Book with ID {index}"
        }).ToList();
    
        private readonly ILogger<BooksController> _logger;
    
        public BooksController(ILogger<BooksController> logger)
        {
            _logger = logger;
        }
    }
    

    These CRUD operations are exposed via HTTP APIs, following the usual verb-based convention.

    For example:

    [HttpGet("{id}")]
    public ActionResult<Book> GetBook([FromRoute] int id)
    {
        _logger.LogInformation("Looking if in my collection with {TotalBooksCount} books there is one with ID {SearchedId}"
                , booksCatalogue.Count, id);
    
        Book? book = booksCatalogue.SingleOrDefault(x => x.Id == id);
    
        return book switch
        {
            null => NotFound(),
            _ => Ok(book)
        };
    }
    

    As you can see, I have added some custom logs: before searching for the element with the specified ID, I also wrote a log message such as “Looking if in my collection with 5 books there is one with ID 2”.

    Where can I find the message? For the sake of this article, I decided to use Seq!

    Seq is a popular log sink (well, as you may know, my favourite one!), that is easy to install and to integrate with .NET. I’ve thoroughly explained how to use Seq in conjunction with ASP.NET in this article and in other ones.

    In short, the most important change in your application is to add Seq as the log sink, like this:

    builder.Services.AddLogging(lb => {
        lb.AddSeq();
    });
    

    Now, whenever I call the GET endpoint, I can see the related log messages appear in Seq:

    Custom log messages

    But sometimes it’s not enough. I want to see more details, and I want them to be applied everywhere!

    How to add HTTP Logging to an ASP.NET application

    HTTP Logging is a way of logging most of the details of the incoming HTTP operations, tracking both the requests and the responses.

    With HTTP Logging, you don’t need to manually write custom logs to access the details of incoming requests: you just need to add its related middleware, configure it as you want, and have all the required logs available for all your endpoints.

    Adding it is pretty straightforward: you first need to add the HttpLogging middleware to the list of services:

    builder.Services.AddHttpLogging(lb => { });
    

    so that you can use it once the WebApplication instance is built:

    There’s still a problem, though: all the logs generated via HttpLogging are, by default, ignored, as logs coming from their namespace (named Microsoft.AspNetCore.HttpLogging.HttpLoggingMiddleware) are at Information log level, thus ignored because of the default configurations.

    You either have to update the appsetting.json file to tell the logging system to process logs from that namespace:

    {
      "Logging": {
        "LogLevel": {
          "Default": "Information",
          "Microsoft.AspNetCore": "Warning",
          "Microsoft.AspNetCore.HttpLogging.HttpLoggingMiddleware": "Information"
        }
      }
    }
    

    or, alternatively, you need to do the same when setting up the logging system in the Program class:

    builder.Services.AddLogging(lb => {
      lb.AddSeq();
    + lb.AddFilter("Microsoft.AspNetCore.HttpLogging.HttpLoggingMiddleware", LogLevel.Information);
    });
    

    We then have all our pieces in place: let’s execute the application!

    First, you can spin up the API; you should be able to see the Swagger page:

    Swagger page for our application&rsquo;s API

    From here, you can call the GET endpoint:

    Http response of the API call, as seen on Swagger

    You should now able to see all the logs in Seq:

    Logs list in Seq

    As you can see from the screenshot above, I have a log entry for the request and one for the response. Also, of course, I have the custom message I added manually in the C# method.

    Understanding HTTP Request logs

    Let’s focus on the data logged for the HTTP request.

    If we open the log related to the HTTP request, we can see all these values:

    Details of the HTTP Request

    Among these details, we can see properties such as:

    • the host name (localhost:7164)
    • the method (GET)
    • the path (/books/4)

    and much more.

    You can see all the properties as standalone items, but you can also have a grouped view of all the properties by accessing the HttpLog element:

    Details of the HTTP Log element

    Notice that for some elements we do not have access to the actual value, as the value is set to [Redacted]. This is a default configuration that prevents logging too many things (and undisclosing some values) as well as writing too much content on the log sink (the more you write, the less performant the queries become – and you also pay more!).

    Among other redacted values, you can see that even the Cookie value is not directly available – for the same reasons explained before.

    Understanding HTTP Response logs

    Of course, we can see some interesting data in the Response log:

    Details of the HTTP Response

    Here, among some other properties such as the Host Name, we can see the Status Code and the Trace Id (which, as you may notice, is the same as the one in te Request).

    As you can see, the log item does not contain the body of the response.

    Also, just as it happens with the Request, we do not have access to the list of HTTP Headers.

    How to save space, storage, and money by combining log entries

    For every HTTP operation, we end up with 2 log entries: one for the Request and one for the Response.

    However, it would be more practical to have both request and response info stored in the same log item so we can understand more easily what is happening.

    Lucky for us, this functionality is already in place. We just need to set the CombineLogs property to true when we add the HttpLogging functionality:

    builder.Services.AddHttpLogging(lb =>
    {
    +  lb.CombineLogs = true;
    }
    );
    

    Then, we are able to see the data for both the request and the related response in the same log element.

    Request and Response combined logs

    The downsides of using HTTP Logging

    Even though everything looks nice and pretty, adding HTTP Logging has some serious consequences.

    First of all, remember that you are doing some more operations for every incoming HTTP request. Just processing and storing the log messages can bring to an application performance downgrade – you are using parts of the processing resources to interpret the HTTP context, create the correct log entry, and store it.

    Depending on how your APIs are structured, you may need to strip out sensitive data: HTTP Logs, by default, log almost everything (except for the parts stored as Redacted). Since you don’t want to store as plain text the content of the requests, you may need to create custom logic to redact parts of the request and response you want to hide: you may need to implement a custom IHttpLoggingInterceptor.

    Finally, consider that logging occupies storage, and storage has a cost. The more you log, the higher the cost. You should define proper strategies to avoid excessive storage costs while keeping valuable logs.

    Further readings

    There is a lot more, as always. In this article, I focused on the most essential parts, but the road to having proper HTTP Logs is still long.

    You may want to start from the official documentation, of course!

    🔗 HTTP logging in ASP.NET Core | Microsoft Docs

    This article first appeared on Code4IT 🐧

    All the logs produced for this article were stored on Seq. You can find more info about installing and integrating Seq in ASP.NET Core in this article:

    🔗 Easy logging management with Seq and ILogger in ASP.NET | Code4IT

    Wrapping up

    HTTP Logging can be a good tool for understanding the application behaviour and detecting anomalies. However, as you can see, there are some important downsides that need to be considered.

    I hope you enjoyed this article! Let’s keep in touch on LinkedIn or Twitter! 🤜🤛

    Happy coding!

    🐧





    Source link